BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 9753329)

  • 1. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation.
    Rao VD; Misra S; Boronenkov IV; Anderson RA; Hurley JH
    Cell; 1998 Sep; 94(6):829-39. PubMed ID: 9753329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereo-specific substrate recognition by phosphatidylinositol phosphate kinases is swapped by changing a single amino acid residue.
    Kunz J; Fuelling A; Kolbe L; Anderson RA
    J Biol Chem; 2002 Feb; 277(7):5611-9. PubMed ID: 11733501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a human inositol 1,4,5-trisphosphate 3-kinase: substrate binding reveals why it is not a phosphoinositide 3-kinase.
    González B; Schell MJ; Letcher AJ; Veprintsev DB; Irvine RF; Williams RL
    Mol Cell; 2004 Sep; 15(5):689-701. PubMed ID: 15350214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function analysis of a bacterial deoxyadenosine kinase reveals the basis for substrate specificity.
    Welin M; Wang L; Eriksson S; Eklund H
    J Mol Biol; 2007 Mar; 366(5):1615-23. PubMed ID: 17229440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of substrate specificity of phosphatidylinositol phosphate kinases.
    Muftuoglu Y; Xue Y; Gao X; Wu D; Ha Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8711-6. PubMed ID: 27439870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of human N-Acetylglucosamine kinase in two complexes with N-Acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation.
    Weihofen WA; Berger M; Chen H; Saenger W; Hinderlich S
    J Mol Biol; 2006 Dec; 364(3):388-99. PubMed ID: 17010375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of inositol phosphate multikinase 2 and implications for substrate specificity.
    Holmes W; Jogl G
    J Biol Chem; 2006 Dec; 281(49):38109-16. PubMed ID: 17050532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases.
    Hon WC; McKay GA; Thompson PR; Sweet RM; Yang DS; Wright GD; Berghuis AM
    Cell; 1997 Jun; 89(6):887-95. PubMed ID: 9200607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis.
    Shan S; Chen X; Liu T; Zhao H; Rao Z; Lou Z
    FASEB J; 2011 May; 25(5):1577-84. PubMed ID: 21282208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-trisphosphate 5/6-kinase.
    Miller GJ; Wilson MP; Majerus PW; Hurley JH
    Mol Cell; 2005 Apr; 18(2):201-12. PubMed ID: 15837423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily.
    Zhou T; Daugherty M; Grishin NV; Osterman AL; Zhang H
    Structure; 2000 Dec; 8(12):1247-57. PubMed ID: 11188689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies and protein engineering of inositol phosphate multikinase.
    Endo-Streeter S; Tsui MM; Odom AR; Block J; York JD
    J Biol Chem; 2012 Oct; 287(42):35360-35369. PubMed ID: 22896696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M. tuberculosis pantothenate kinase: dual substrate specificity and unusual changes in ligand locations.
    Chetnani B; Kumar P; Surolia A; Vijayan M
    J Mol Biol; 2010 Jul; 400(2):171-85. PubMed ID: 20451532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of an aminoimidazole riboside kinase from Salmonella enterica: implications for the evolution of the ribokinase superfamily.
    Zhang Y; Dougherty M; Downs DM; Ealick SE
    Structure; 2004 Oct; 12(10):1809-21. PubMed ID: 15458630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic tagging of endogenous type IIbeta phosphatidylinositol 5-phosphate 4-kinase in DT40 cells reveals a nuclear localisation.
    Richardson JP; Wang M; Clarke JH; Patel KJ; Irvine RF
    Cell Signal; 2007 Jun; 19(6):1309-14. PubMed ID: 17303380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.
    Shi R; McDonald L; Cui Q; Matte A; Cygler M; Ekiel I
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1302-7. PubMed ID: 21209328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography.
    Kraft L; Sprenger GA; Lindqvist Y
    J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PtdIns(4,5)P
    Sharma S; Bhattacharya S; Bhattacharya A
    FEBS J; 2019 Jun; 286(11):2216-2234. PubMed ID: 30843363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type I phosphatidylinositol 4-phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity.
    Lacalle RA; de Karam JC; Martínez-Muñoz L; Artetxe I; Peregil RM; Sot J; Rojas AM; Goñi FM; Mellado M; Mañes S
    FASEB J; 2015 Jun; 29(6):2371-85. PubMed ID: 25713054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear targeting of the beta isoform of type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its alpha-helix 7.
    Ciruela A; Hinchliffe KA; Divecha N; Irvine RF
    Biochem J; 2000 Mar; 346 Pt 3(Pt 3):587-91. PubMed ID: 10698683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.