BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 9753329)

  • 21. Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily.
    Josefsen L; Bohn L; Sørensen MB; Rasmussen SK
    Gene; 2007 Aug; 397(1-2):114-25. PubMed ID: 17531407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled.
    Hu J; Yuan Q; Kang X; Qin Y; Li L; Ha Y; Wu D
    Nat Commun; 2015 Sep; 6():8205. PubMed ID: 26365782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of 4-methyl-5-beta-hydroxyethylthiazole kinase from Bacillus subtilis at 1.5 A resolution.
    Campobasso N; Mathews II; Begley TP; Ealick SE
    Biochemistry; 2000 Jul; 39(27):7868-77. PubMed ID: 10891066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid kinase and protein kinase activities of G-protein-coupled phosphoinositide 3-kinase gamma: structure-activity analysis and interactions with wortmannin.
    Stoyanova S; Bulgarelli-Leva G; Kirsch C; Hanck T; Klinger R; Wetzker R; Wymann MP
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):489-95. PubMed ID: 9182708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity.
    Kunz J; Wilson MP; Kisseleva M; Hurley JH; Majerus PW; Anderson RA
    Mol Cell; 2000 Jan; 5(1):1-11. PubMed ID: 10678164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and comparative analysis of Arabidopsis phosphatidylinositol phosphate 5-kinase 10 reveals differences in Arabidopsis and human phosphatidylinositol phosphate kinases.
    Perera IY; Davis AJ; Galanopoulou D; Im YJ; Boss WF
    FEBS Lett; 2005 Jun; 579(16):3427-32. PubMed ID: 15949803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of apo and ligand bound vibrio cholerae ribokinase (Vc-RK): role of monovalent cation induced activation and structural flexibility in sugar phosphorylation.
    Paul R; Patra MD; Sen U
    Adv Exp Med Biol; 2015; 842():293-307. PubMed ID: 25408351
    [No Abstract]   [Full Text] [Related]  

  • 28. Conformational stability of inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) dictates its substrate selectivity.
    Gosein V; Miller GJ
    J Biol Chem; 2013 Dec; 288(52):36788-95. PubMed ID: 24165122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphatidylinositol phosphate kinase: a link between protein kinase and glutathione synthase folds.
    Grishin NV
    J Mol Biol; 1999 Aug; 291(2):239-47. PubMed ID: 10438618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into the synthesis of FMN in prokaryotic organisms.
    Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of isoprenoids: crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritol kinase.
    Miallau L; Alphey MS; Kemp LE; Leonard GA; McSweeney SM; Hecht S; Bacher A; Eisenreich W; Rohdich F; Hunter WN
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9173-8. PubMed ID: 12878729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational itinerary of Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase during its catalytic cycle.
    Bacik JP; Tavassoli M; Patel TR; McKenna SA; Vocadlo DJ; Khajehpour M; Mark BL
    J Biol Chem; 2014 Feb; 289(7):4504-14. PubMed ID: 24362022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of Bacillus subtilis YXKO--a member of the UPF0031 family and a putative kinase.
    Zhang RG; Grembecka J; Vinokour E; Collart F; Dementieva I; Minor W; Joachimiak A
    J Struct Biol; 2002 Sep; 139(3):161-70. PubMed ID: 12457846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli.
    Grueninger D; Schulz GE
    J Mol Biol; 2006 Jun; 359(3):787-97. PubMed ID: 16674975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for the catalysis and substrate specificity of homoserine kinase.
    Krishna SS; Zhou T; Daugherty M; Osterman A; Zhang H
    Biochemistry; 2001 Sep; 40(36):10810-8. PubMed ID: 11535056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P(2) and PtdIns(4,5)P(2) in vitro and is inhibited by phosphorylation.
    Westergren T; Dove SK; Sommarin M; Pical C
    Biochem J; 2001 Nov; 359(Pt 3):583-9. PubMed ID: 11672432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein-tyrosine kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide.
    Zhao X; Lam JS
    J Biol Chem; 2002 Feb; 277(7):4722-30. PubMed ID: 11741974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase.
    Nishikawa K; Toker A; Wong K; Marignani PA; Johannes FJ; Cantley LC
    J Biol Chem; 1998 Sep; 273(36):23126-33. PubMed ID: 9722541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues.
    Ando H; Hirose M; Gainche L; Kawaai K; Bonneau B; Ijuin T; Itoh T; Takenawa T; Mikoshiba K
    PLoS One; 2015; 10(10):e0141569. PubMed ID: 26509711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and characterization of a phosphoinositide phosphate kinase homolog.
    Chang JD; Field SJ; Rameh LE; Carpenter CL; Cantley LC
    J Biol Chem; 2004 Mar; 279(12):11672-9. PubMed ID: 14701839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.