These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9753466)

  • 1. A single mutation Asp229 --> Ser confers upon Gs alpha the ability to interact with regulators of G protein signaling.
    Natochin M; Artemyev NO
    Biochemistry; 1998 Sep; 37(39):13776-80. PubMed ID: 9753466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of transducin GTPase activity by chimeric RGS16 and RGS9 regulators of G protein signaling and the effector molecule.
    McEntaffer RL; Natochin M; Artemyev NO
    Biochemistry; 1999 Apr; 38(16):4931-7. PubMed ID: 10213594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitution of transducin ser202 by asp abolishes G-protein/RGS interaction.
    Natochin M; Artemyev NO
    J Biol Chem; 1998 Feb; 273(8):4300-3. PubMed ID: 9468476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of the Asn residue essential for RGS protein binding to G-proteins.
    Natochin M; McEntaffer RL; Artemyev NO
    J Biol Chem; 1998 Mar; 273(12):6731-5. PubMed ID: 9506972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palmitoylation regulates regulators of G-protein signaling (RGS) 16 function. I. Mutation of amino-terminal cysteine residues on RGS16 prevents its targeting to lipid rafts and palmitoylation of an internal cysteine residue.
    Hiol A; Davey PC; Osterhout JL; Waheed AA; Fischer ER; Chen CK; Milligan G; Druey KM; Jones TL
    J Biol Chem; 2003 May; 278(21):19301-8. PubMed ID: 12642593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palmitoylation regulates regulator of G-protein signaling (RGS) 16 function. II. Palmitoylation of a cysteine residue in the RGS box is critical for RGS16 GTPase accelerating activity and regulation of Gi-coupled signalling.
    Osterhout JL; Waheed AA; Hiol A; Ward RJ; Davey PC; Nini L; Wang J; Milligan G; Jones TL; Druey KM
    J Biol Chem; 2003 May; 278(21):19309-16. PubMed ID: 12642592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino-terminal cysteine residues of RGS16 are required for palmitoylation and modulation of Gi- and Gq-mediated signaling.
    Druey KM; Ugur O; Caron JM; Chen CK; Backlund PS; Jones TL
    J Biol Chem; 1999 Jun; 274(26):18836-42. PubMed ID: 10373502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits.
    Watson N; Linder ME; Druey KM; Kehrl JH; Blumer KJ
    Nature; 1996 Sep; 383(6596):172-5. PubMed ID: 8774882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutation in the heterotrimeric stimulatory guanine nucleotide binding protein alpha-subunit with impaired receptor-mediated activation because of elevated GTPase activity.
    Warner DR; Weinstein LS
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4268-72. PubMed ID: 10200251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11alpha).
    Scheschonka A; Dessauer CW; Sinnarajah S; Chidiac P; Shi CS; Kehrl JH
    Mol Pharmacol; 2000 Oct; 58(4):719-28. PubMed ID: 10999941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the affinity and selectivity of RGS protein interaction with G alpha subunits by a conserved asparagine/serine residue.
    Posner BA; Mukhopadhyay S; Tesmer JJ; Gilman AG; Ross EM
    Biochemistry; 1999 Jun; 38(24):7773-9. PubMed ID: 10387017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits.
    Berman DM; Wilkie TM; Gilman AG
    Cell; 1996 Aug; 86(3):445-52. PubMed ID: 8756726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence-based assays for RGS box function.
    Willard FS; Kimple RJ; Kimple AJ; Johnston CA; Siderovski DP
    Methods Enzymol; 2004; 389():56-71. PubMed ID: 15313559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit.
    Barren B; Natochin M; Artemyev NO
    Mol Vis; 2006 May; 12():492-8. PubMed ID: 16735989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S111N mutation in the helical domain of human Gs(alpha) reduces its GDP/GTP exchange rate.
    Brito M; Guzmán L; Romo X; Soto X; Hinrichs MV; Olate J
    J Cell Biochem; 2002; 85(3):615-20. PubMed ID: 11968001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGS3 and RGS4 are GTPase activating proteins in the heart.
    Zhang S; Watson N; Zahner J; Rottman JN; Blumer KJ; Muslin AJ
    J Mol Cell Cardiol; 1998 Feb; 30(2):269-76. PubMed ID: 9515003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric regulation of GAP activity by phospholipids in regulators of G-protein signaling.
    Tu Y; Wilkie TM
    Methods Enzymol; 2004; 389():89-105. PubMed ID: 15313561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulators of G protein signaling (RGS) domains of RGS4, RGS10, and GAIP retain GTPase activating protein activity in vitro.
    Popov S; Yu K; Kozasa T; Wilkie TM
    Proc Natl Acad Sci U S A; 1997 Jul; 94(14):7216-20. PubMed ID: 9207071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarity exchange at the interface of regulators of G protein signaling with G protein alpha-subunits.
    Wieland T; Bahtijari N; Zhou XB; Kleuss C; Simon MI
    J Biol Chem; 2000 Sep; 275(37):28500-6. PubMed ID: 10878019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of human retinal RGS with G-protein alpha-subunits.
    Natochin M; Lipkin VM; Artemyev NO
    FEBS Lett; 1997 Jul; 411(2-3):179-82. PubMed ID: 9271201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.