These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 9753547)
61. Cross-linking and disulfide bond formation of introduced cysteine residues suggest a modified model for the tertiary structure of URF13 in the pore-forming oligomers. Rhoads DM; Brunner-Neuenschwander B; Levings CS; Siedow JN Arch Biochem Biophys; 1998 Jun; 354(1):158-64. PubMed ID: 9633611 [TBL] [Abstract][Full Text] [Related]
62. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Sahin-Tóth M; Dunten RL; Gonzalez A; Kaback HR Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10547-51. PubMed ID: 1438245 [TBL] [Abstract][Full Text] [Related]
63. Structure and function of transmembrane segment XII in osmosensor and osmoprotectant transporter ProP of Escherichia coli. Liu F; Culham DE; Vernikovska YI; Keates RA; Boggs JM; Wood JM Biochemistry; 2007 May; 46(19):5647-55. PubMed ID: 17441691 [TBL] [Abstract][Full Text] [Related]
64. Melibiose permease of Escherichia coli: structural organization of cosubstrate binding sites as deduced from tryptophan fluorescence analyses. Mus-Veteau I; Leblanc G Biochemistry; 1996 Sep; 35(37):12053-60. PubMed ID: 8810910 [TBL] [Abstract][Full Text] [Related]
65. Substrate selectivity of the melibiose permease (MelY) from Enterobacter cloacae. Tavoulari S; Frillingos S J Mol Biol; 2008 Feb; 376(3):681-93. PubMed ID: 18177889 [TBL] [Abstract][Full Text] [Related]
66. What's new with lactose permease. Kaback HR; Jung K; Jung H; Wu J; Privé GG; Zen K J Bioenerg Biomembr; 1993 Dec; 25(6):627-36. PubMed ID: 8144491 [TBL] [Abstract][Full Text] [Related]
67. Close approximation of putative alpha -helices II, IV, VII, X, and XI in the translocation pathway of the lactose transport protein of Streptococcus thermophilus. Veenhoff LM; Geertsma ER; Knol J; Poolman B J Biol Chem; 2000 Aug; 275(31):23834-40. PubMed ID: 10816556 [TBL] [Abstract][Full Text] [Related]
68. Dynamics of lactose permease of Escherichia coli determined by site-directed chemical labeling and fluorescence spectroscopy. Wu J; Frillingos S; Kaback HR Biochemistry; 1995 Jul; 34(26):8257-63. PubMed ID: 7599118 [TBL] [Abstract][Full Text] [Related]
69. Thiol cross-linking of transmembrane domains IV and V in the lactose permease of Escherichia coli. Wolin CD; Kaback HR Biochemistry; 2000 May; 39(20):6130-5. PubMed ID: 10821686 [TBL] [Abstract][Full Text] [Related]
70. Characterization of Glu126 and Arg144, two residues that are indispensable for substrate binding in the lactose permease of Escherichia coli. Sahin-Tóth M; le Coutre J; Kharabi D; le Maire G; Lee JC; Kaback HR Biochemistry; 1999 Jan; 38(2):813-9. PubMed ID: 9888822 [TBL] [Abstract][Full Text] [Related]
71. Structure and mechanism of the lactose permease of Escherichia coli. Abramson J; Smirnova I; Kasho V; Verner G; Kaback HR; Iwata S Science; 2003 Aug; 301(5633):610-5. PubMed ID: 12893935 [TBL] [Abstract][Full Text] [Related]
72. Helix packing in the lactose permease of Escherichia coli: distances between site-directed nitroxides and a lanthanide. Voss J; Wu J; Hubbell WL; Jacques V; Meares CF; Kaback HR Biochemistry; 2001 Mar; 40(10):3184-8. PubMed ID: 11258934 [TBL] [Abstract][Full Text] [Related]
73. Site-directed spin labeling demonstrates that transmembrane domain XII in the lactose permease of Escherichia coli is an alpha-helix. Voss J; He MM; Hubbell WL; Kaback HR Biochemistry; 1996 Oct; 35(39):12915-8. PubMed ID: 8841136 [TBL] [Abstract][Full Text] [Related]
74. Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. Jung K; Jung H; Kaback HR Biochemistry; 1994 Apr; 33(13):3980-5. PubMed ID: 8142402 [TBL] [Abstract][Full Text] [Related]
75. Characterization of a lactose permease mutant that binds IIAGlc in the absence of ligand. Sondej M; Vázquez-Ibar JL; Farshidi A; Peterkofsky A; Kaback HR Biochemistry; 2003 Aug; 42(30):9153-9. PubMed ID: 12885249 [TBL] [Abstract][Full Text] [Related]
76. Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling: application to the lactose permease of Escherichia coli. Voss J; Hubbell WL; Kaback HR Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12300-3. PubMed ID: 8618889 [TBL] [Abstract][Full Text] [Related]
77. Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Jung K; Jung H; Wu J; Privé GG; Kaback HR Biochemistry; 1993 Nov; 32(46):12273-8. PubMed ID: 8241112 [TBL] [Abstract][Full Text] [Related]
78. Creation of a fully functional cysteine-less variant of osmosensor and proton-osmoprotectant symporter ProP from Escherichia coli and its application to assess the transporter's membrane orientation. Culham DE; Hillar A; Henderson J; Ly A; Vernikovska YI; Racher KI; Boggs JM; Wood JM Biochemistry; 2003 Oct; 42(40):11815-23. PubMed ID: 14529293 [TBL] [Abstract][Full Text] [Related]
79. Physiological evidence for an interaction between helix XI and helices I, II, and V in the melibiose carrier of Escherichia coli. Ding PZ; Wilson TH Biochem Biophys Res Commun; 2000 Feb; 268(2):409-13. PubMed ID: 10679218 [TBL] [Abstract][Full Text] [Related]
80. Functional estimation of loop-helix boundaries in the lactose permease of Escherichia coli by single amino acid deletion analysis. Wolin CD; Kaback HR Biochemistry; 2001 Feb; 40(7):1996-2003. PubMed ID: 11329266 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]