These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 9753547)
81. Relative proximity and orientation of helices 4 and 8 of the GLUT1 glucose transporter. Alisio A; Mueckler M J Biol Chem; 2004 Jun; 279(25):26540-5. PubMed ID: 15073187 [TBL] [Abstract][Full Text] [Related]
82. Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 1. Proximity of helix VII (Asp237 and Asp240) with helices X (Lys319) and XI (Lys358). He MM; Voss J; Hubbell WL; Kaback HR Biochemistry; 1995 Dec; 34(48):15661-6. PubMed ID: 7495795 [TBL] [Abstract][Full Text] [Related]
83. Site-directed alkylation and the alternating access model for LacY. Kaback HR; Dunten R; Frillingos S; Venkatesan P; Kwaw I; Zhang W; Ermolova N Proc Natl Acad Sci U S A; 2007 Jan; 104(2):491-4. PubMed ID: 17172438 [TBL] [Abstract][Full Text] [Related]
84. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase. Jittikoon J; East JM; Lee AG Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884 [TBL] [Abstract][Full Text] [Related]
85. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 2. Site-directed fluorescence studies. Wu J; Kaback HR Biochemistry; 1994 Oct; 33(40):12166-71. PubMed ID: 7918438 [TBL] [Abstract][Full Text] [Related]
86. Ligand-induced conformational changes in the Bacillus subtilis chemoreceptor McpB determined by disulfide crosslinking in vivo. Szurmant H; Bunn MW; Cho SH; Ordal GW J Mol Biol; 2004 Dec; 344(4):919-28. PubMed ID: 15544802 [TBL] [Abstract][Full Text] [Related]
87. The proximity between helix I and helix XI in the melibiose carrier of Escherichia coli as determined by cross-linking. Ding PZ; Wilson TH Biochim Biophys Acta; 2001 Oct; 1514(2):230-8. PubMed ID: 11557023 [TBL] [Abstract][Full Text] [Related]
88. Helix packing in the sucrose permease of Escherichia coli: properties of engineered charge pairs between helices VII and XI. Frillingos S; Sahin-Tóth M; Lengeler JW; Kaback HR Biochemistry; 1995 Jul; 34(29):9368-73. PubMed ID: 7626606 [TBL] [Abstract][Full Text] [Related]
89. The substrate-binding site in the lactose permease of Escherichia coli. Venkatesan P; Kaback HR Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9802-7. PubMed ID: 9707556 [TBL] [Abstract][Full Text] [Related]
90. Opening and closing of the periplasmic gate in lactose permease. Zhou Y; Guan L; Freites JA; Kaback HR Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3774-8. PubMed ID: 18319336 [TBL] [Abstract][Full Text] [Related]
91. Evidence that transmembrane segment 2 of the lactose permease is part of a conformationally sensitive interface between the two halves of the protein. Jessen-Marshall AE; Brooker RJ J Biol Chem; 1996 Jan; 271(3):1400-4. PubMed ID: 8576130 [TBL] [Abstract][Full Text] [Related]
92. Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 2. Proximity of helix IX (Arg302) with helix X (His322 and Glu325). He MM; Voss J; Hubbell WL; Kaback HR Biochemistry; 1995 Dec; 34(48):15667-70. PubMed ID: 7495796 [TBL] [Abstract][Full Text] [Related]
93. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins. Dobrowolski A; Lolkema JS Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131 [TBL] [Abstract][Full Text] [Related]
94. Evidence for structural symmetry and functional asymmetry in the lactose permease of Escherichia coli. Green AL; Hrodey HA; Brooker RJ Biochemistry; 2003 Sep; 42(38):11226-33. PubMed ID: 14503872 [TBL] [Abstract][Full Text] [Related]
95. In vitro synthesis of lactose permease to probe the mechanism of membrane insertion and folding. Nagamori S; Vázquez-Ibar JL; Weinglass AB; Kaback HR J Biol Chem; 2003 Apr; 278(17):14820-6. PubMed ID: 12590141 [TBL] [Abstract][Full Text] [Related]
96. Functional and structural interactions of the transmembrane domain X of NhaA, Na+/H+ antiporter of Escherichia coli, at physiological pH. Kozachkov L; Herz K; Padan E Biochemistry; 2007 Mar; 46(9):2419-30. PubMed ID: 17284054 [TBL] [Abstract][Full Text] [Related]
97. A molecular mechanism for energy coupling in a membrane transport protein, the lactose permease of Escherichia coli. Kaback HR Proc Natl Acad Sci U S A; 1997 May; 94(11):5539-43. PubMed ID: 9159108 [TBL] [Abstract][Full Text] [Related]
98. Formation of an antiparallel, intermolecular coiled coil is associated with in vivo dimerization of osmosensor and osmoprotectant transporter ProP in Escherichia coli. Hillar A; Culham DE; Vernikovska YI; Wood JM; Boggs JM Biochemistry; 2005 Aug; 44(30):10170-80. PubMed ID: 16042394 [TBL] [Abstract][Full Text] [Related]
99. The effect of modifications of the charged residues in the transmembrane helices on the transport activity of the melibiose carrier of Escherichia coli. Ding PZ; Wilson TH Biochem Biophys Res Commun; 2001 Jul; 285(2):348-54. PubMed ID: 11444849 [TBL] [Abstract][Full Text] [Related]
100. The first cytoplasmic loop of the mannitol permease from Escherichia coli is accessible for sulfhydryl reagents from the periplasmic side of the membrane. Vervoort EB; Bultema JB; Schuurman-Wolters GK; Geertsma ER; Broos J; Poolman B J Mol Biol; 2005 Feb; 346(3):733-43. PubMed ID: 15713459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]