BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9753555)

  • 41. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
    Ruan B; Hoskins J; Bryan PN
    Biochemistry; 1999 Jun; 38(26):8562-71. PubMed ID: 10387104
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase.
    Juers DH; Hakda S; Matthews BW; Huber RE
    Biochemistry; 2003 Nov; 42(46):13505-11. PubMed ID: 14621996
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Process of biosynthetic protein folding determines the rapid formation of native structure.
    Fedorov AN; Baldwin TO
    J Mol Biol; 1999 Nov; 294(2):579-86. PubMed ID: 10610781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic analysis of molecular dynamics simulations reveals changes in the denatured state and switch of folding pathways upon single-point mutation of a beta-sheet miniprotein.
    Muff S; Caflisch A
    Proteins; 2008 Mar; 70(4):1185-95. PubMed ID: 17847092
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The barriers in the bimolecular and unimolecular folding reactions of the dimeric core domain of Escherichia coli Trp repressor are dominated by enthalpic contributions.
    Gloss LM; Matthews CR
    Biochemistry; 1998 Nov; 37(45):16000-10. PubMed ID: 9843407
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unfolding kinetics of glutathione reductase from cyanobacterium Spirulina maxima.
    Rendón JL; Mendoza-Hernández G
    Arch Biochem Biophys; 2001 Mar; 387(2):265-72. PubMed ID: 11370850
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TEM-1 beta-lactamase folds in a nonhierarchical manner with transient non-native interactions involving the C-terminal region.
    Lejeune A; Pain RH; Charlier P; Frère JM; Matagne A
    Biochemistry; 2008 Jan; 47(4):1186-93. PubMed ID: 18171085
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q beta-galactosidases.
    Richard JP; Huber RE; Heo C; Amyes TL; Lin S
    Biochemistry; 1996 Sep; 35(38):12387-401. PubMed ID: 8823174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic analysis of β-galactosidase and β-glucuronidase tetramerization coupled with protein translation.
    Matsuura T; Hosoda K; Ichihashi N; Kazuta Y; Yomo T
    J Biol Chem; 2011 Jun; 286(25):22028-34. PubMed ID: 21531724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Complementation in beta-galactosidase: from protein structure to genetic engineering.
    Ullmann A
    Bioessays; 1992 Mar; 14(3):201-5. PubMed ID: 1345751
    [No Abstract]   [Full Text] [Related]  

  • 51. Mechanism of the alpha-complementation reaction of E. coli beta-galactosidase deduced from fluorescence correlation spectroscopy measurements.
    Meyer-Almes FJ; Wyzgol K; Powell MJ
    Biophys Chem; 1998 Nov; 75(2):151-60. PubMed ID: 9857483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction steps.
    Das B; Banerjee K; Gangopadhyay G
    J Chem Phys; 2013 Dec; 139(24):244104. PubMed ID: 24387354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural characteristics of an abnormal protein influencing its proteolytic susceptibility.
    Kosinski MJ; Bailey JE
    J Biotechnol; 1992 Apr; 23(2):211-23. PubMed ID: 1368059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stabilities of uncomplemented and complemented M15 beta-galactosidase (Escherichia coli) and the relationship to alpha-complementation.
    Gallagher CN; Huber RE
    Biochem Cell Biol; 1999; 77(2):109-18. PubMed ID: 10438145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies of the M15 beta-galactosidase complementation process.
    Gallagher CN; Huber RE
    J Protein Chem; 1998 Feb; 17(2):131-41. PubMed ID: 9535275
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beta galactosidase enzyme fragment complementation as a novel technology for high throughput screening.
    Eglen RM; Singh R
    Comb Chem High Throughput Screen; 2003 Jun; 6(4):381-7. PubMed ID: 12769682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro alpha-complementation of beta-galactosidase on a bacteriophage surface.
    Dunn IS
    Eur J Biochem; 1996 Dec; 242(3):720-6. PubMed ID: 9022702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. beta-Galactosidase alpha complementation: properties of the complemented enzyme and mechanism of the complementation reaction.
    Langley KE; Zabin I
    Biochemistry; 1976 Nov; 15(22):4866-75. PubMed ID: 791361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors.
    Sjostrom SL; Joensson HN; Svahn HA
    Lab Chip; 2013 May; 13(9):1754-61. PubMed ID: 23478908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel chemical kinetics for a single enzyme reaction: relationship between substrate concentration and the second moment of enzyme reaction time.
    Jung W; Yang S; Sung J
    J Phys Chem B; 2010 Aug; 114(30):9840-7. PubMed ID: 20666524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.