These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 9753571)
1. Fourier Transform Infrared Spectroscopy and Vibrational Coupling in the OH-Bending Band of 13CH3OH. Predoi-Cross A; Lees RM; Johns JWC J Mol Spectrosc; 1998 Oct; 191(2):348-361. PubMed ID: 9753571 [TBL] [Abstract][Full Text] [Related]
2. Fourier Transform Infrared Spectroscopy of the First CO-Stretch Overtone Band of 13CH3OH. Predoi-Cross A; Mellau GC; Lees RM; Winnewisser BP J Mol Spectrosc; 1998 Jun; 189(2):144-52. PubMed ID: 9647710 [TBL] [Abstract][Full Text] [Related]
3. High Resolution Fourier Transform Far Infrared Spectroscopy of CH3OD. Mukhopadhyay I; Gupta PK; Moruzzi G; Winnewisser BP; Winnewisser M J Mol Spectrosc; 1997 Nov; 186(1):15-21. PubMed ID: 9417946 [TBL] [Abstract][Full Text] [Related]
4. High-resolution spectroscopy of the C-N stretching band of methylamine. Lees RM; Sun ZD; Billinghurst BE J Chem Phys; 2011 Sep; 135(10):104306. PubMed ID: 21932892 [TBL] [Abstract][Full Text] [Related]
5. Far-infrared spectroscopy of CH3OD in highly excited torsional states and the atlas of the Fourier transform spectra in the range 200-350 cm(-1). Mukhopadhyay I; Mellau GC; Klee S Spectrochim Acta A Mol Biomol Spectrosc; 2000 Oct; 56A(11):2211-30. PubMed ID: 11058067 [TBL] [Abstract][Full Text] [Related]
6. Dark state illuminated: infrared spectrum and inverted torsional structure of the nu(11) out-of-plane CH3-rocking mode of methanol. Lees RM; Xu LH Phys Rev Lett; 2000 Apr; 84(17):3815-8. PubMed ID: 11019213 [TBL] [Abstract][Full Text] [Related]
7. Torsion-Rotation Energy Levels and the Hindering Potential Barrier for the Excited Vibrational State of the OH-Stretch Fundamental Band nu1 of Methanol. Hunt RH; Shelton WN; Flaherty FA; Cook WB J Mol Spectrosc; 1998 Dec; 192(2):277-293. PubMed ID: 9831495 [TBL] [Abstract][Full Text] [Related]
8. Vibrational coupling pathways in methanol as revealed by coherence-converted population transfer Fourier transform microwave infrared double-resonance spectroscopy. Twagirayezu S; Clasp TN; Perry DS; Neill JL; Muckle MT; Pate BH J Phys Chem A; 2010 Jul; 114(25):6818-28. PubMed ID: 20527865 [TBL] [Abstract][Full Text] [Related]
9. The nu(12) Band of CH(3)SiD(3). Schroderus J; Moazzen-Ahmadi N; Ozier I J Mol Spectrosc; 2000 Jun; 201(2):292-296. PubMed ID: 10814492 [TBL] [Abstract][Full Text] [Related]
10. High resolution spectral analysis of 13CH3OH in the excited torsional states. Mukhopadhyay I; Duan YB; Wu XT; Takagi K Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jan; 56A(1):19-28. PubMed ID: 10728853 [TBL] [Abstract][Full Text] [Related]
11. Analysis of Rotational Transitions in Excited Vibrational States of Propionitrile (C2H5CN). Fukuyama Y; Omori K; Odashima H; Takagi K; Tsunekawa S J Mol Spectrosc; 1999 Jan; 193(1):72-103. PubMed ID: 9878491 [TBL] [Abstract][Full Text] [Related]
12. Quantum tunneling in the midrange vibrational fundamentals of tropolone. Redington RL; Redington TE; Sams RL J Phys Chem A; 2006 Aug; 110(31):9633-42. PubMed ID: 16884197 [TBL] [Abstract][Full Text] [Related]
13. IR and FTMW-IR spectroscopy and vibrational relaxation pathways in the CH stretch region of CH3OH and CH3OD. Twagirayezu S; Wang X; Perry DS; Neill JL; Muckle MT; Pate BH; Xu LH J Phys Chem A; 2011 Sep; 115(34):9748-63. PubMed ID: 21667993 [TBL] [Abstract][Full Text] [Related]
14. Global Fit of Torsion-Rotation Transitions in the Ground and First Excited Torsional States of CD3OH Methanol. Walsh MS; Xu LH; Lees RM J Mol Spectrosc; 1998 Mar; 188(1):85-93. PubMed ID: 9480805 [TBL] [Abstract][Full Text] [Related]
15. Sub-Doppler Infrared Spectra of the OH-Stretch Fundamental of (13)C-Methanol. Chirokolava A; Perry DS; Xu LH J Mol Spectrosc; 2000 Oct; 203(2):320-329. PubMed ID: 10986144 [TBL] [Abstract][Full Text] [Related]
16. Second order Coriolis resonance between the C-O stretch and the CH3 rock levels of methanol involving excited torsional state. Mukhopadhyay I Spectrochim Acta A Mol Biomol Spectrosc; 1997 Dec; 53A(14):2467-9. PubMed ID: 9517016 [TBL] [Abstract][Full Text] [Related]
17. Vibrational Dynamics of the Intramolecular H-Bond in Acetylacetone Investigated with Transient and 2D IR Spectroscopy. Dean JLS; Fournier JA J Phys Chem B; 2022 May; 126(19):3551-3562. PubMed ID: 35536173 [TBL] [Abstract][Full Text] [Related]
18. Pressure-induced correlation field splitting of vibrational modes: structural and dynamic properties in lipid bilayers and biomembranes. Wong PT Biophys J; 1994 May; 66(5):1505-14. PubMed ID: 8061199 [TBL] [Abstract][Full Text] [Related]
19. Torsional Splitting in the Degenerate Vibrational States of (70)Ge(2)H(6): Rotation-Torsion Analysis of the nu(7) and nu(9) Fundamentals. Lattanzi F; di Lauro C ; Bürger H; Mkadmi EB J Mol Spectrosc; 2000 Sep; 203(1):118-125. PubMed ID: 10930338 [TBL] [Abstract][Full Text] [Related]
20. Role of Torsion-Vibration Coupling in the Overtone Spectrum and Vibrationally Mediated Photochemistry of CH Dzugan LC; Matthews J; Sinha A; McCoy AB J Phys Chem A; 2017 Dec; 121(48):9262-9274. PubMed ID: 29172536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]