These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

740 related articles for article (PubMed ID: 9753599)

  • 21. Learning-stage-dependent, field-specific, map plasticity in the rat auditory cortex during appetitive operant conditioning.
    Takahashi H; Yokota R; Funamizu A; Kose H; Kanzaki R
    Neuroscience; 2011 Dec; 199():243-58. PubMed ID: 21985937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corticothalamic feedback for sound-specific plasticity of auditory thalamic neurons elicited by tones paired with basal forebrain stimulation.
    Zhang Y; Yan J
    Cereb Cortex; 2008 Jul; 18(7):1521-8. PubMed ID: 18203697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex.
    Condon CD; Weinberger NM
    Behav Neurosci; 1991 Jun; 105(3):416-30. PubMed ID: 1863363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.
    Scheich H; Brechmann A; Brosch M; Budinger E; Ohl FW; Selezneva E; Stark H; Tischmeyer W; Wetzel W
    Hear Res; 2011 Jan; 271(1-2):3-15. PubMed ID: 20971178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning-induced plasticity in animal and human auditory cortex.
    Ohl FW; Scheich H
    Curr Opin Neurobiol; 2005 Aug; 15(4):470-7. PubMed ID: 16009546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectro-temporal sound density-dependent long-term adaptation in cat primary auditory cortex.
    Gourévitch B; Eggermont JJ
    Eur J Neurosci; 2008 Jun; 27(12):3310-21. PubMed ID: 18598269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1992 Feb; 106(1):81-105. PubMed ID: 1554440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decreased input-specific plasticity of the auditory cortex in mice lacking M1 muscarinic acetylcholine receptors.
    Zhang Y; Hamilton SE; Nathanson NM; Yan J
    Cereb Cortex; 2006 Sep; 16(9):1258-65. PubMed ID: 16292003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive changes in cortical receptive fields induced by attention to complex sounds.
    Fritz JB; Elhilali M; Shamma SA
    J Neurophysiol; 2007 Oct; 98(4):2337-46. PubMed ID: 17699691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex.
    Fritz J; Shamma S; Elhilali M; Klein D
    Nat Neurosci; 2003 Nov; 6(11):1216-23. PubMed ID: 14583754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contributions of the thalamocortical system towards sound-specific auditory plasticity.
    Liu X; Basavaraj S; Krishnan R; Yan J
    Neurosci Biobehav Rev; 2011 Nov; 35(10):2155-61. PubMed ID: 21349286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the primary auditory cortex using dynamic synapses: can synaptic plasticity explain the temporal tuning?
    Saeb S; Gharibzadeh S; Towhidkhah F; Farajidavar A
    J Theor Biol; 2007 Sep; 248(1):1-9. PubMed ID: 17559885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice.
    Misane I; Tovote P; Meyer M; Spiess J; Ogren SO; Stiedl O
    Hippocampus; 2005; 15(4):418-26. PubMed ID: 15669102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pedunculopontine tegmental nucleus: a second cholinergic source for frequency-specific auditory plasticity.
    Luo F; Liu X; Wang C; Yan J
    J Neurophysiol; 2011 Jan; 105(1):107-16. PubMed ID: 20980544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arousal-related associative response characteristics of dorsal lateral geniculate nucleus neurons during acoustic Pavlovian fear conditioning.
    Cain ME; Kapp BS; Puryear CB
    Behav Neurosci; 2000 Apr; 114(2):241-53. PubMed ID: 10832786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid development of learning-induced receptive field plasticity in the auditory cortex.
    Edeline JM; Pham P; Weinberger NM
    Behav Neurosci; 1993 Aug; 107(4):539-51. PubMed ID: 8397859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fear conditioning-induced plasticity in auditory thalamus and cortex: To what extent is it expressed during slow-wave sleep?
    Hennevin E; Maho C
    Behav Neurosci; 2005 Oct; 119(5):1277-89. PubMed ID: 16300434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurotoxic lesions of the dorsal hippocampus disrupt auditory-cued trace heart rate (fear) conditioning in rabbits.
    McEchron MD; Tseng W; Disterhoft JF
    Hippocampus; 2000; 10(6):739-51. PubMed ID: 11153719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory specific fear conditioning results in increased levels of synaptophysin in the basolateral amygdala.
    Nithianantharajah J; Murphy M
    Neurobiol Learn Mem; 2008 Jul; 90(1):36-43. PubMed ID: 18226933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex.
    Ma X; Suga N
    J Neurophysiol; 2003 Jan; 89(1):90-103. PubMed ID: 12522162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.