These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9753639)

  • 1. Transition metals bind to glycated proteins forming redox active "glycochelates": implications for the pathogenesis of certain diabetic complications.
    Qian M; Liu M; Eaton JW
    Biochem Biophys Res Commun; 1998 Sep; 250(2):385-9. PubMed ID: 9753639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators.
    Zheng Y; Li XK; Wang Y; Cai L
    Hemoglobin; 2008; 32(1-2):135-45. PubMed ID: 18274991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy.
    Eaton JW; Qian M
    Mol Cell Biochem; 2002; 234-235(1-2):135-42. PubMed ID: 12162426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein aging by carboxymethylation of lysines generates sites for divalent metal and redox active copper binding: relevance to diseases of glycoxidative stress.
    Saxena AK; Saxena P; Wu X; Obrenovich M; Weiss MF; Monnier VM
    Biochem Biophys Res Commun; 1999 Jul; 260(2):332-8. PubMed ID: 10403771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease.
    Castellani RJ; Honda K; Zhu X; Cash AD; Nunomura A; Perry G; Smith MA
    Ageing Res Rev; 2004 Jul; 3(3):319-26. PubMed ID: 15231239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox metals and neurodegenerative disease.
    Sayre LM; Perry G; Smith MA
    Curr Opin Chem Biol; 1999 Apr; 3(2):220-5. PubMed ID: 10226049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between mesna and selected transition metals in vitro and in vivo.
    Shaw IC; Weeks MS
    Arzneimittelforschung; 1986 Jun; 36(6):997-1000. PubMed ID: 3091043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycochelates and the etiology of diabetic peripheral neuropathy.
    Qian M; Eaton JW
    Free Radic Biol Med; 2000 Feb; 28(4):652-6. PubMed ID: 10719247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate-induced high-affinity binding of copper to cytosolic proteins.
    Ohta Y; Shiraishi N; Inai Y; Lee IS; Iwahashi H; Nishikimi M
    Biochem Biophys Res Commun; 2001 Oct; 287(4):888-94. PubMed ID: 11573948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron.
    Nakamura M; Shishido N; Nunomura A; Smith MA; Perry G; Hayashi Y; Nakayama K; Hayashi T
    Biochemistry; 2007 Nov; 46(44):12737-43. PubMed ID: 17929832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of metals in neurodegenerative diseases.
    Sayre LM; Perry G; Atwood CS; Smith MA
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):731-41. PubMed ID: 10875436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray crystallographic analyses of complexes between bovine beta-trypsin and Schiff base copper(II) or iron(III) chelates.
    Toyota E; Ng KK; Sekizaki H; Itoh K; Tanizawa K; James MN
    J Mol Biol; 2001 Jan; 305(3):471-9. PubMed ID: 11152605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation.
    Ardestani A; Yazdanparast R
    Int J Biol Macromol; 2007 Dec; 41(5):572-8. PubMed ID: 17765965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and voltammetric characterization of the metal binding to the prion protein: insights into pH dependence and redox chemistry.
    Davies P; Marken F; Salter S; Brown DR
    Biochemistry; 2009 Mar; 48(12):2610-9. PubMed ID: 19196019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of ferritin and redox-active transition metals in normal and cataractous human lenses.
    Garner B; Roberg K; Qian M; Eaton JW; Truscott RJ
    Exp Eye Res; 2000 Dec; 71(6):599-607. PubMed ID: 11095912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of copper-catalyzed cysteine oxidation by nanomolar concentrations of iron salts.
    Munday R; Munday CM; Winterbourn CC
    Free Radic Biol Med; 2004 Mar; 36(6):757-64. PubMed ID: 14990354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of cysteine and homocysteine by bovine albumin.
    Gabaldon M
    Arch Biochem Biophys; 2004 Nov; 431(2):178-88. PubMed ID: 15488466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of the ezrin binding epitope for advanced glycation endproducts.
    McRobert EA; Tikoo A; Cooper ME; Bach LA
    Int J Biochem Cell Biol; 2008; 40(8):1570-80. PubMed ID: 18203644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.