BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 9753687)

  • 1. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system.
    Burns AJ; Douarin NM
    Development; 1998 Nov; 125(21):4335-47. PubMed ID: 9753687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras.
    Burns AJ; Le Douarin NM
    Anat Rec; 2001 Jan; 262(1):16-28. PubMed ID: 11146425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
    Burns AJ; Champeval D; Le Douarin NM
    Dev Biol; 2000 Mar; 219(1):30-43. PubMed ID: 10677253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In ovo transplantation of enteric nervous system precursors from vagal to sacral neural crest results in extensive hindgut colonisation.
    Burns AJ; Delalande JM; Le Douarin NM
    Development; 2002 Jun; 129(12):2785-96. PubMed ID: 12050129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lumbo-sacral neural crest contributes to the avian enteric nervous system independently of vagal neural crest.
    Hearn C; Newgreen D
    Dev Dyn; 2000 Jul; 218(3):525-30. PubMed ID: 10878617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colonization of the bowel by neural crest-derived cells re-migrating from foregut backtransplanted to vagal or sacral regions of host embryos.
    Rothman TP; Le Douarin NM; Fontaine-PĂ©rus JC; Gershon MD
    Dev Dyn; 1993 Mar; 196(3):217-33. PubMed ID: 8400406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine scale differences within the vagal neural crest for enteric nervous system formation.
    Simkin JE; Zhang D; Stamp LA; Newgreen DF
    Dev Biol; 2019 Feb; 446(1):22-33. PubMed ID: 30448439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appearance of neurons and glia with respect to the wavefront during colonization of the avian gut by neural crest cells.
    Conner PJ; Focke PJ; Noden DM; Epstein ML
    Dev Dyn; 2003 Jan; 226(1):91-8. PubMed ID: 12508228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation.
    Barlow AJ; Wallace AS; Thapar N; Burns AJ
    Development; 2008 May; 135(9):1681-91. PubMed ID: 18385256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of organ specific commitment of vagal neural crest cell derivatives as shown by back-transplantation of GFP chicken tissues.
    Freem LJ; Delalande JM; Campbell AM; Thapar N; Burns AJ
    Int J Dev Biol; 2012; 56(4):245-54. PubMed ID: 22562200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurofilament expression in vagal neural crest-derived precursors of enteric neurons.
    Payette RF; Bennett GS; Gershon MD
    Dev Biol; 1984 Oct; 105(2):273-87. PubMed ID: 6383899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell profiling coupled with lineage analysis reveals vagal and sacral neural crest contributions to the developing enteric nervous system.
    Jacobs-Li J; Tang W; Li C; Bronner ME
    Elife; 2023 Oct; 12():. PubMed ID: 37877560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal neural crest contribution to the chick embryo cloaca.
    O' Donnell AM; Bannigan J; Puri P
    Pediatr Surg Int; 2006 Dec; 22(12):983-6. PubMed ID: 17001488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors.
    Mundell NA; Plank JL; LeGrone AW; Frist AY; Zhu L; Shin MK; Southard-Smith EM; Labosky PA
    Dev Biol; 2012 Mar; 363(2):373-87. PubMed ID: 22266424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pelvic plexus contributes ganglion cells to the hindgut enteric nervous system.
    Nagy N; Brewer KC; Mwizerwa O; Goldstein AM
    Dev Dyn; 2007 Jan; 236(1):73-83. PubMed ID: 16937371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sacral neural crest cell migration to the gut is dependent upon the migratory environment and not cell-autonomous migratory properties.
    Erickson CA; Goins TL
    Dev Biol; 2000 Mar; 219(1):79-97. PubMed ID: 10677257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The receptor tyrosine kinase RET regulates hindgut colonization by sacral neural crest cells.
    Delalande JM; Barlow AJ; Thomas AJ; Wallace AS; Thapar N; Erickson CA; Burns AJ
    Dev Biol; 2008 Jan; 313(1):279-92. PubMed ID: 18031721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a neurally related laminin binding protein by neural crest-derived cells that colonize the gut: relationship to the formation of enteric ganglia.
    Pomeranz HD; Sherman DL; Smalheiser NR; Tennyson VM; Gershon MD
    J Comp Neurol; 1991 Nov; 313(4):625-42. PubMed ID: 1838378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo.
    Wang X; Chan AK; Sham MH; Burns AJ; Chan WY
    Gastroenterology; 2011 Sep; 141(3):992-1002.e1-6. PubMed ID: 21699792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal coelomic transplants: a novel method for studying enteric nervous system development.
    Nagy N; Goldstein AM
    Cell Tissue Res; 2006 Oct; 326(1):43-55. PubMed ID: 16736197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.