BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9753692)

  • 1. A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure.
    Rizzi M; Bolognesi M; Coda A
    Structure; 1998 Sep; 6(9):1129-40. PubMed ID: 9753692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis.
    Rizzi M; Nessi C; Mattevi A; Coda A; Bolognesi M; Galizzi A
    EMBO J; 1996 Oct; 15(19):5125-34. PubMed ID: 8895556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NH3-dependent NAD+ synthetase from Bacillus subtilis at 1 A resolution.
    Symersky J; Devedjiev Y; Moore K; Brouillette C; DeLucas L
    Acta Crystallogr D Biol Crystallogr; 2002 Jul; 58(Pt 7):1138-46. PubMed ID: 12077433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of active-site loops in NH3-dependent NAD+ synthetase from Bacillus subtilis.
    Devedjiev Y; Symersky J; Singh R; Jedrzejas M; Brouillette C; Brouillette W; Muccio D; Chattopadhyay D; DeLucas L
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):806-12. PubMed ID: 11375500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements.
    Jauch R; Humm A; Huber R; Wahl MC
    J Biol Chem; 2005 Apr; 280(15):15131-40. PubMed ID: 15699042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural adaptation of an interacting non-native C-terminal helical extension revealed in the crystal structure of NAD+ synthetase from Bacillus anthracis.
    McDonald HM; Pruett PS; Deivanayagam C; Protasevich II; Carson WM; DeLucas LJ; Brouillette WJ; Brouillette CG
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):891-905. PubMed ID: 17642516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization of NAD+ synthetase from Bacillus subtilis.
    Rizzi M; Nessi C; Bolognesi M; Coda A; Galizzi A
    Proteins; 1996 Oct; 26(2):236-8. PubMed ID: 8916230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Insights from the Crystal Structure of Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase Complexed with the Adenylate Intermediate.
    Chen Y; Jiang Y; Guo Z
    Biochemistry; 2016 Dec; 55(48):6685-6695. PubMed ID: 27933791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.
    Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S
    Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic and molecular dynamics simulation analysis of NAD synthetase from methicillin resistant Staphylococcus aureus (MRSA).
    Sultana KN; Kuldeep J; Siddiqi MI; Srivastava SK
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2349-2362. PubMed ID: 33098904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase.
    Eriksen TA; Kadziola A; Bentsen AK; Harlow KW; Larsen S
    Nat Struct Biol; 2000 Apr; 7(4):303-8. PubMed ID: 10742175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of cations in Bacillus subtilis phosphoribosyldiphosphate synthetase and their role in catalysis.
    Eriksen TA; Kadziola A; Larsen S
    Protein Sci; 2002 Feb; 11(2):271-9. PubMed ID: 11790837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and molecular dynamics of ammonia transport in Staphylococcus aureus NH
    Sultana KN; Srivastava SK
    Int J Biol Macromol; 2022 Apr; 203():593-600. PubMed ID: 35120937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of nicotinamide mononucleotide adenylyltransferase: a key enzyme in NAD(+) biosynthesis.
    D'Angelo I; Raffaelli N; Dabusti V; Lorenzi T; Magni G; Rizzi M
    Structure; 2000 Sep; 8(9):993-1004. PubMed ID: 10986466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase.
    Chen Y; Sun Y; Song H; Guo Z
    J Biol Chem; 2015 Sep; 290(39):23971-83. PubMed ID: 26276389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction.
    Desogus G; Todone F; Brick P; Onesti S
    Biochemistry; 2000 Jul; 39(29):8418-25. PubMed ID: 10913247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streptococcus pyogenes quinolinate-salvage pathway-structural and functional studies of quinolinate phosphoribosyl transferase and NH
    Booth WT; Morris TL; Mysona DP; Shah MJ; Taylor LK; Karlin TW; Clary K; Majorek KA; Offermann LR; Chruszcz M
    FEBS J; 2017 Aug; 284(15):2425-2441. PubMed ID: 28618168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of catalytic intermediates of human selenophosphate synthetase 1.
    Wang KT; Wang J; Li LF; Su XD
    J Mol Biol; 2009 Jul; 390(4):747-59. PubMed ID: 19477186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.