These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 9753737)
41. ATP13, a nuclear gene of Saccharomyces cerevisiae essential for the expression of subunit 9 of the mitochondrial ATPase. Ackerman SH; Gatti DL; Gellefors P; Douglas MG; Tzagoloff A FEBS Lett; 1991 Jan; 278(2):234-8. PubMed ID: 1825065 [TBL] [Abstract][Full Text] [Related]
42. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. van Hoof A; Frischmeyer PA; Dietz HC; Parker R Science; 2002 Mar; 295(5563):2262-4. PubMed ID: 11910110 [TBL] [Abstract][Full Text] [Related]
43. The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Preker PJ; Lingner J; Minvielle-Sebastia L; Keller W Cell; 1995 May; 81(3):379-89. PubMed ID: 7736590 [TBL] [Abstract][Full Text] [Related]
44. Organization and processing of the mitochondrial oxi3/oli2 multigenic transcript in yeast. Simon M; Faye G Mol Gen Genet; 1984; 196(2):266-74. PubMed ID: 6387398 [TBL] [Abstract][Full Text] [Related]
45. The 5' untranslated region of the PPR1 regulatory gene dictates rapid mRNA decay in yeast. Pierrat B; Lacroute F; Losson R Gene; 1993 Sep; 131(1):43-51. PubMed ID: 8370540 [TBL] [Abstract][Full Text] [Related]
46. Inactivation of SSM4, a new Saccharomyces cerevisiae gene, suppresses mRNA instability due to rna14 mutations. Mandart E; Dufour ME; Lacroute F Mol Gen Genet; 1994 Nov; 245(3):323-33. PubMed ID: 7816042 [TBL] [Abstract][Full Text] [Related]
47. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Vilela C; Linz B; Rodrigues-Pousada C; McCarthy JE Nucleic Acids Res; 1998 Mar; 26(5):1150-9. PubMed ID: 9469820 [TBL] [Abstract][Full Text] [Related]
48. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Liao X; Butow RA Cell; 1993 Jan; 72(1):61-71. PubMed ID: 8422683 [TBL] [Abstract][Full Text] [Related]
49. Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Carroll KL; Pradhan DA; Granek JA; Clarke ND; Corden JL Mol Cell Biol; 2004 Jul; 24(14):6241-52. PubMed ID: 15226427 [TBL] [Abstract][Full Text] [Related]
50. T7 RNA polymerase-directed transcripts are processed in yeast and link 3' end formation to mRNA nuclear export. Dower K; Rosbash M RNA; 2002 May; 8(5):686-97. PubMed ID: 12022234 [TBL] [Abstract][Full Text] [Related]
51. Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae. Laman H; Balderes D; Shore D Mol Cell Biol; 1995 Jul; 15(7):3608-17. PubMed ID: 7791768 [TBL] [Abstract][Full Text] [Related]
52. Dependence of yeast pre-mRNA 3'-end processing on CFT1: a sequence homolog of the mammalian AAUAAA binding factor. Stumpf G; Domdey H Science; 1996 Nov; 274(5292):1517-20. PubMed ID: 8929410 [TBL] [Abstract][Full Text] [Related]
53. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Chien CT; Buck S; Sternglanz R; Shore D Cell; 1993 Nov; 75(3):531-41. PubMed ID: 8221892 [TBL] [Abstract][Full Text] [Related]
54. The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic-helix-loop-helix protein. Nishi K; Park CS; Pepper AE; Eichinger G; Innis MA; Holland MJ Mol Cell Biol; 1995 May; 15(5):2646-53. PubMed ID: 7739544 [TBL] [Abstract][Full Text] [Related]
55. A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Jia Y; Rothermel B; Thornton J; Butow RA Mol Cell Biol; 1997 Mar; 17(3):1110-7. PubMed ID: 9032238 [TBL] [Abstract][Full Text] [Related]
56. Transcription and RNA-processing in fission yeast mitochondria. Schäfer B; Hansen M; Lang BF RNA; 2005 May; 11(5):785-95. PubMed ID: 15811919 [TBL] [Abstract][Full Text] [Related]
57. Single point mutations in Met4p impair the transcriptional repression of MET genes in Saccharomyces cerevisiae. Omura F; Fujita A; Shibano Y FEBS Lett; 1996 Jun; 387(2-3):179-83. PubMed ID: 8674545 [TBL] [Abstract][Full Text] [Related]
58. Identification of pre-mRNA polyadenylation sites in Saccharomyces cerevisiae. Heidmann S; Obermaier B; Vogel K; Domdey H Mol Cell Biol; 1992 Sep; 12(9):4215-29. PubMed ID: 1508215 [TBL] [Abstract][Full Text] [Related]
59. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Slusher LB; Gillman EC; Martin NC; Hopper AK Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9789-93. PubMed ID: 1946403 [TBL] [Abstract][Full Text] [Related]
60. A region of the Sir1 protein dedicated to recognition of a silencer and required for interaction with the Orc1 protein in saccharomyces cerevisiae. Gardner KA; Rine J; Fox CA Genetics; 1999 Jan; 151(1):31-44. PubMed ID: 9872946 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]