These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 9753864)
1. Insight into the environment of tryptophan in a hydrophobic model peptide upon aggregation and interaction with lipid vesicles: a steady state and time resolved fluorescence study. Joseph M; Nagaraj R Indian J Biochem Biophys; 1998 Apr; 35(2):67-75. PubMed ID: 9753864 [TBL] [Abstract][Full Text] [Related]
2. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes. Saleh MT; Ferguson J; Boggs JM; Gariépy J Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710 [TBL] [Abstract][Full Text] [Related]
3. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data. Voglino L; Simon SA; McIntosh TJ Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948 [TBL] [Abstract][Full Text] [Related]
4. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
5. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model. Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492 [TBL] [Abstract][Full Text] [Related]
6. Conformational changes of neuromedin B and delta sleep-inducing peptide induced by their interaction with lipid membranes as revealed by spectroscopic techniques and molecular dynamics simulation. Polverini E; Casadio R; Neyroz P; Masotti L Arch Biochem Biophys; 1998 Jan; 349(2):225-35. PubMed ID: 9448709 [TBL] [Abstract][Full Text] [Related]
7. Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. de Planque MR; Bonev BB; Demmers JA; Greathouse DV; Koeppe RE; Separovic F; Watts A; Killian JA Biochemistry; 2003 May; 42(18):5341-8. PubMed ID: 12731875 [TBL] [Abstract][Full Text] [Related]
8. Structure and dynamics of the gammaM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function. De Almeida RF; Loura LM; Prieto M; Watts A; Fedorov A; Barrantes FJ Mol Membr Biol; 2006; 23(4):305-15. PubMed ID: 16923724 [TBL] [Abstract][Full Text] [Related]
9. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Powl AM; East JM; Lee AG Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699 [TBL] [Abstract][Full Text] [Related]
10. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers. Raja MM; Kinne RK Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736 [TBL] [Abstract][Full Text] [Related]
11. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase. Clark EH; East JM; Lee AG Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643 [TBL] [Abstract][Full Text] [Related]
12. Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake. Caesar CE; Esbjörner EK; Lincoln P; Nordén B Biochemistry; 2006 Jun; 45(24):7682-92. PubMed ID: 16768464 [TBL] [Abstract][Full Text] [Related]
13. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Tiriveedhi V; Butko P Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552 [TBL] [Abstract][Full Text] [Related]
14. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Ren J; Lew S; Wang J; London E Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543 [TBL] [Abstract][Full Text] [Related]
15. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers. Plasencia I; Rivas L; Keough KM; Marsh D; Pérez-Gil J Biochem J; 2004 Jan; 377(Pt 1):183-93. PubMed ID: 14514353 [TBL] [Abstract][Full Text] [Related]
16. Effect of lipid molecular structure and gramicidin A on the core of lipid vesicle bilayers. A time-resolved fluorescence depolarization study. Muller JM; van Ginkel G; van Faassen EE Biochemistry; 1996 Jan; 35(2):488-97. PubMed ID: 8555219 [TBL] [Abstract][Full Text] [Related]
17. The orientation of nisin in membranes. Breukink E; van Kraaij C; van Dalen A; Demel RA; Siezen RJ; de Kruijff B; Kuipers OP Biochemistry; 1998 Jun; 37(22):8153-62. PubMed ID: 9609711 [TBL] [Abstract][Full Text] [Related]
18. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers. Martin I; Pécheur EI; Ruysschaert JM; Hoekstra D Biochemistry; 1999 Jul; 38(29):9337-47. PubMed ID: 10413508 [TBL] [Abstract][Full Text] [Related]
19. Lipid bilayer topology of the transmembrane alpha-helix of M13 Major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy. Koehorst RB; Spruijt RB; Vergeldt FJ; Hemminga MA Biophys J; 2004 Sep; 87(3):1445-55. PubMed ID: 15345527 [TBL] [Abstract][Full Text] [Related]
20. Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Jin Y; Mozsolits H; Hammer J; Zmuda E; Zhu F; Zhang Y; Aguilar MI; Blazyk J Biochemistry; 2003 Aug; 42(31):9395-405. PubMed ID: 12899626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]