These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9754328)

  • 1. Increased formation of interstitial hydroxyl radical following myocardial ischemia: possible relationship to endogenous opioid peptides.
    Yang CS; Tsai PJ; Chen WY; Kuo JS
    Redox Rep; 1997; 3(5-6):295-301. PubMed ID: 9754328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardial microdialysis of salicylic acid to detect hydroxyl radical generation during ischemia.
    Obata T; Hosokawa H; Soeda T; Karashima K; Uchida Y; Yamanaka Y
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Jan; 110(1):277-83. PubMed ID: 7858947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prazosin attenuates hydroxyl radical generation in the rat myocardium.
    Obata T; Yamanaka Y
    Eur J Pharmacol; 1999 Aug; 379(2-3):161-6. PubMed ID: 10497902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of hydroxyl free radical generation by calcium overload in rat myocardium.
    Obata T; Tamura M; Yamanaka Y
    J Pharm Pharmacol; 1997 Aug; 49(8):787-90. PubMed ID: 9379357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on nitric oxide-induced hydroxyl radical generation in the rat heart.
    Obata T; Ebihara A; Yamanaka Y
    Biochim Biophys Acta; 2001 Apr; 1536(1):55-63. PubMed ID: 11335104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo monitoring of norepinephrine and .OH generation on myocardial ischemic injury by dialysis technique.
    Obata T; Hosokawa H; Yamanaka Y
    Am J Physiol; 1994 Mar; 266(3 Pt 2):H903-8. PubMed ID: 8160838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium.
    Obata T; Nakashima M
    Eur J Pharmacol; 2016 Mar; 774():20-4. PubMed ID: 26724394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective effect of histidine on iron (II)-induced hydroxyl radical generation in rat hearts.
    Obata T; Aomine M; Yamanaka Y
    J Physiol Paris; 1999; 93(3):213-8. PubMed ID: 10399676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effect of histidine on hydroxyl radical generation induced by potassium-depolarization in rat myocardium.
    Obata T; Aomine M; Yamanaka Y
    Jpn J Pharmacol; 1999 Jul; 80(3):217-22. PubMed ID: 10461766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of hydroxyl radicals during myocardial reperfusion after experimental ischemia of different duration.
    Gorodetskaya EA; Kalenikova EI
    Bull Exp Biol Med; 2001 Jun; 131(6):533-5. PubMed ID: 11586398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of microdialysis for in-vivo monitoring of hydroxyl free-radical generation in the rat.
    Obata T
    J Pharm Pharmacol; 1997 Jul; 49(7):724-30. PubMed ID: 9255719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary and myocardial effects of acetaminophen: protection during ischemia-reperfusion.
    Merrill G; McConnell P; Vandyke K; Powell S
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2631-8. PubMed ID: 11356619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halothane prevents postischemic production of hydroxyl radicals in the canine heart.
    Glantz L; Ginosar Y; Chevion M; Gozal Y; Elami A; Navot N; Kitrossky N; Drenger B
    Anesthesiology; 1997 Feb; 86(2):440-7. PubMed ID: 9054262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron (III) attenuates hydroxyl radical generation accompanying non-enzymatic oxidation of noradrenaline in the rat heart.
    Obata T; Yamanaka Y
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Feb; 365(2):158-63. PubMed ID: 11819034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of reactive oxygen species in the sensitivity of rat hypertrophied myocardium to ischemia.
    Kalenikova EI; Gorodetskaya EA; Murashev AN; Ruuge EK; Medvedev OS
    Biochemistry (Mosc); 2004 Mar; 69(3):311-6. PubMed ID: 15061699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Block of cardiac ATP-sensitive K(+) channels reduces hydroxyl radicals in the rat myocardium.
    Obata T; Yamanaka Y
    Arch Biochem Biophys; 2000 Jun; 378(2):195-200. PubMed ID: 10860536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl radical production during myocardial ischemia and reperfusion in cats.
    O'Neill CA; Fu LW; Halliwell B; Longhurst JC
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H660-7. PubMed ID: 8770109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radicals' production and ECG parameters during ischemia and reperfusion in rat, guinea pig and rabbit isolated heart.
    Paulova H; Stracina T; Jarkovsky J; Novakova M; Taborska E
    Gen Physiol Biophys; 2013 Jun; 32(2):221-8. PubMed ID: 23682020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of alpha-phenyl-tert-butylnitrone and selegiline on hydroxyl free radicals in rat striatum produced by local application of glutamate.
    Ferger B; van Amsterdam C; Seyfried C; Kuschinsky K
    J Neurochem; 1998 Jan; 70(1):276-80. PubMed ID: 9422372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac microdialysis of salicylic acid .OH generation on nonenzymatic oxidation by norepinephrine in rat heart.
    Obata T; Yamanaka Y
    Biochem Pharmacol; 1997 May; 53(9):1375-8. PubMed ID: 9214699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.