These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9754330)

  • 1. Starvation-induced autophagocytosis paradoxically decreases the susceptibility to oxidative stress of the extremely oxidative stress-sensitive NIT insulinoma cells.
    Olejnicka BT; Dalen H; Baranowski MM; Brunk UT
    Redox Rep; 1997; 3(5-6):311-8. PubMed ID: 9754330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A short exposure to a high-glucose milieu stabilizes the acidic vacuolar apparatus of insulinoma cells in culture to ensuing oxidative stress.
    Olejnicka BT; Ollinger K; Brunk UT
    APMIS; 1997 Sep; 105(9):689-98. PubMed ID: 9350212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress.
    Garner B; Roberg K; Brunk UT
    Free Radic Res; 1998 Aug; 29(2):103-14. PubMed ID: 9790512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure of cells to nonlethal concentrations of hydrogen peroxide induces degeneration-repair mechanisms involving lysosomal destabilization.
    Brunk UT; Zhang H; Dalen H; Ollinger K
    Free Radic Biol Med; 1995 Dec; 19(6):813-22. PubMed ID: 8582654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minute oxidative stress is sufficient to induce apoptotic death of NIT-1 insulinoma cells.
    Olejnicka BT; Dalen H; Brunk UT
    APMIS; 1999 Aug; 107(8):747-61. PubMed ID: 10515125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel cellular defenses against iron and oxidation: ferritin and autophagocytosis preserve lysosomal stability in airway epithelium.
    Persson HL; Nilsson KJ; Brunk UT
    Redox Rep; 2001; 6(1):57-63. PubMed ID: 11333118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starvation-induced autophagocytosis enhances the susceptibility of insulinoma cells to oxidative stress.
    Zhang H; Olejnicka B; Ă–llinger K; Brunk UT
    Redox Rep; 1996 Aug; 2(4):235-47. PubMed ID: 27406273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell sensitivity to oxidative stress is influenced by ferritin autophagy.
    Kurz T; Gustafsson B; Brunk UT
    Free Radic Biol Med; 2011 Jun; 50(11):1647-58. PubMed ID: 21419217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the cytoprotective role of ferritin in macrophages and its ability to enhance lysosomal stability.
    Garner B; Li W; Roberg K; Brunk UT
    Free Radic Res; 1997 Nov; 27(5):487-500. PubMed ID: 9518065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysosomal heterogeneity between and within cells with respect to resistance against oxidative stress.
    Nilsson E; Ghassemifar R; Brunk UT
    Histochem J; 1997; 29(11-12):857-65. PubMed ID: 9466153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient deprivation of cultured rat hepatocytes increases the desferrioxamine-available iron pool and augments the sensitivity to hydrogen peroxide.
    Ollinger K; Roberg K
    J Biol Chem; 1997 Sep; 272(38):23707-11. PubMed ID: 9295314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak.
    Brunk UT; Svensson I
    Redox Rep; 1999; 4(1-2):3-11. PubMed ID: 10714269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron.
    Kurz T; Karlsson M; Brunk UT; Nilsson SE; Frennesson C
    Autophagy; 2009 May; 5(4):494-501. PubMed ID: 19223767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy of iron-binding proteins may contribute to the oxidative stress resistance of ARPE-19 cells.
    Karlsson M; Frennesson C; Gustafsson T; Brunk UT; Nilsson SE; Kurz T
    Exp Eye Res; 2013 Nov; 116():359-65. PubMed ID: 24416768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.
    Karlsson M; Kurz T
    Acta Ophthalmol; 2016 Sep; 94(6):556-64. PubMed ID: 27287874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulinoma cells in culture show pronounced sensitivity to alloxan-induced oxidative stress.
    Zhang H; Ollinger K; Brunk U
    Diabetologia; 1995 Jun; 38(6):635-41. PubMed ID: 7672482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells.
    Ullio C; Brunk UT; Urani C; Melchioretto P; Bonelli G; Baccino FM; Autelli R
    Autophagy; 2015; 11(12):2184-98. PubMed ID: 26566051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron.
    Kurz T; Terman A; Brunk UT
    Arch Biochem Biophys; 2007 Jun; 462(2):220-30. PubMed ID: 17306211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox activity within the lysosomal compartment: implications for aging and apoptosis.
    Kurz T; Eaton JW; Brunk UT
    Antioxid Redox Signal; 2010 Aug; 13(4):511-23. PubMed ID: 20039839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intralysosomal iron induces lysosomal membrane permeabilization and cathepsin D-mediated cell death in trabecular meshwork cells exposed to oxidative stress.
    Lin Y; Epstein DL; Liton PB
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6483-95. PubMed ID: 20574010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.