These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 9754789)
1. Antibacterial activity of wine against Salmonella enteritidis: pH or alcohol? Marimón JM; Bujanda L; Gutierrez-Stampa MA; Cosme A; Arenas JI J Clin Gastroenterol; 1998 Sep; 27(2):179-80. PubMed ID: 9754789 [No Abstract] [Full Text] [Related]
2. Antimicrobial effects of wine: separating the role of polyphenols, pH, ethanol, and other wine components. Boban N; Tonkic M; Budimir D; Modun D; Sutlovic D; Punda-Polic V; Boban M J Food Sci; 2010 Jun; 75(5):M322-6. PubMed ID: 20629891 [TBL] [Abstract][Full Text] [Related]
3. Wine has activity against entero-pathogenic bacteria in vitro but not in vivo. Sugita-Konishi Y; Hara-Kudo Y; Iwamoto T; Kondo K Biosci Biotechnol Biochem; 2001 Apr; 65(4):954-7. PubMed ID: 11388480 [TBL] [Abstract][Full Text] [Related]
4. Optimization of antimicrobial activity of surfactin and polylysine against Salmonella enteritidis in milk evaluated by a response surface methodology. Huang X; Suo J; Cui Y Foodborne Pathog Dis; 2011 Mar; 8(3):439-43. PubMed ID: 21381972 [TBL] [Abstract][Full Text] [Related]
5. Ethanol adaptation induces direct protection and cross-protection against freezing stress in Salmonella enterica serovar Enteritidis. He S; Zhou X; Shi C; Shi X J Appl Microbiol; 2016 Mar; 120(3):697-704. PubMed ID: 26743544 [TBL] [Abstract][Full Text] [Related]
6. Short communication: Antimicrobial effect of lactoferrin and its amidated and pepsin-digested derivatives against Salmonella Enteritidis and Pseudomonas fluorescens. Del Olmo A; Calzada J; Nuñez M J Dairy Sci; 2010 Sep; 93(9):3965-9. PubMed ID: 20723671 [TBL] [Abstract][Full Text] [Related]
7. Feeding the BT cationic peptides to chickens at hatch reduces cecal colonization by Salmonella enterica serovar Enteritidis and primes innate immune cell functional activity. Kogut MH; He H; Genovese KJ; Jiang YW Foodborne Pathog Dis; 2010 Jan; 7(1):23-30. PubMed ID: 19735207 [TBL] [Abstract][Full Text] [Related]
8. Effects of a lactoperoxidase-thiocyanate-hydrogen peroxide system on Salmonella enteritidis in animal or vegetable foods. Touch V; Hayakawa S; Yamada S; Kaneko S Int J Food Microbiol; 2004 Jun; 93(2):175-83. PubMed ID: 15135956 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial activity of basil (Ocimum basilicum) oil against Salmonella enteritidis in vitro and in food. Rattanachaikunsopon P; Phumkhachorn P Biosci Biotechnol Biochem; 2010; 74(6):1200-4. PubMed ID: 20530897 [TBL] [Abstract][Full Text] [Related]
10. Antibiotics and human defence mechanisms: the effects of ampicillin and cefotaxime on intra- and extracellular killing of Salmonella enteritidis. Long MH; Shapland CE; Leonard LA; Rowland H J Antimicrob Chemother; 1984 Sep; 14 Suppl B():81-9. PubMed ID: 6094465 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of Salmonella Enteritidis by cerein 8A, EDTA and sodium lactate. Lappe R; Motta AS; Sant'anna V; Brandelli A Int J Food Microbiol; 2009 Nov; 135(3):312-6. PubMed ID: 19775768 [TBL] [Abstract][Full Text] [Related]
12. Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Cao W; Zhu ZW; Shi ZX; Wang CY; Li BM Int J Food Microbiol; 2009 Mar; 130(2):88-93. PubMed ID: 19185376 [TBL] [Abstract][Full Text] [Related]
13. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. He Y; Ingudam S; Reed S; Gehring A; Strobaugh TP; Irwin P J Nanobiotechnology; 2016 Jun; 14(1):54. PubMed ID: 27349516 [TBL] [Abstract][Full Text] [Related]
14. Effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan. Leleu S; Herman L; Heyndrickx M; De Reu K; Michiels CW; De Baerdemaeker J; Messens W Int J Food Microbiol; 2011 Jan; 145(1):43-8. PubMed ID: 21146239 [TBL] [Abstract][Full Text] [Related]
15. Contribution of wine components to inactivation of food-borne pathogens. Waite JG; Daeschel MA J Food Sci; 2007 Sep; 72(7):M286-91. PubMed ID: 17995654 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine microorganisms. Costa A; Barata A; Malfeito-Ferreira M; Loureiro V Food Microbiol; 2008 Apr; 25(2):422-7. PubMed ID: 18206786 [TBL] [Abstract][Full Text] [Related]
17. Contribution of the hdeB-like gene (SEN1493) to survival of Salmonella enterica enteritidis Nal(R) at pH 2. Joerger RD; Choi S Foodborne Pathog Dis; 2015 Apr; 12(4):353-9. PubMed ID: 25659065 [TBL] [Abstract][Full Text] [Related]
18. Antibiogram studies of Salmonella enteritidis phage type 4 isolates from poultry and meat. Shaheen N; Fatima N; Sajid SU; Gandapur AS J Ayub Med Coll Abbottabad; 2004; 16(4):55-9. PubMed ID: 15762066 [TBL] [Abstract][Full Text] [Related]
19. Recipes for antimicrobial wine marinades against Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica. Friedman M; Henika PR; Levin CE; Mandrell RE J Food Sci; 2007 Aug; 72(6):M207-13. PubMed ID: 17995688 [TBL] [Abstract][Full Text] [Related]
20. Salmonella enteritidis phage type 4 infection of broiler chickens: a hazard to public health. Rampling A; Anderson JR; Upson R; Peters E; Ward LR; Rowe B Lancet; 1989 Aug; 2(8660):436-8. PubMed ID: 2569611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]