These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9755034)

  • 21. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stress analysis of a canine spinal motion segment using the finite element technique.
    Lim TH; Goel VK; Weinstein JN; Kong W
    J Biomech; 1994 Oct; 27(10):1259-69. PubMed ID: 7962013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo age- and sex-related creep of human lumbar motion segments and discs in pure centric tension.
    Kurutz M
    J Biomech; 2006; 39(7):1180-90. PubMed ID: 15925372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between axial and bending behaviors of the human thoracolumbar vertebra.
    Crawford RP; Keaveny TM
    Spine (Phila Pa 1976); 2004 Oct; 29(20):2248-55. PubMed ID: 15480136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.
    Rohlmann A; Burra NK; Zander T; Bergmann G
    Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5).
    Kelly BP; Bennett CR
    J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of tensioning the lumbar fasciae on segmental stiffness during flexion and extension: Young Investigator Award winner.
    Barker PJ; Guggenheimer KT; Grkovic I; Briggs CA; Jones DC; Thomas CD; Hodges PW
    Spine (Phila Pa 1976); 2006 Feb; 31(4):397-405. PubMed ID: 16481949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination.
    Arshad R; Zander T; Bashkuev M; Schmidt H
    Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-axial spine biomechanical testing system with speckle displacement instrumentation.
    Chung SM; Teoh SH; Tsai KT; Sin KK
    J Biomech Eng; 2002 Aug; 124(4):471-7. PubMed ID: 12188214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.
    Bennett CR; Kelly BP
    J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The stabilizing axial spinal pillar in the lumbar spine.
    Iencean SM
    Spinal Cord; 2002 Apr; 40(4):178-85. PubMed ID: 11965556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of spongiosa density on load bearing of the lumbar spine.A finite element analysis].
    Pitzen T; Matthis D; Müller-Storz H; Ritz R; Caspar W; Steudel WI
    Z Orthop Ihre Grenzgeb; 2000; 138(1):17-21. PubMed ID: 10730358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit.
    Zander T; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2004; 49(1-2):27-32. PubMed ID: 15032495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of implant stiffness on the bypassed bone mineral density and facet fusion stiffness of the canine spine.
    Craven TG; Carson WL; Asher MA; Robinson RG
    Spine (Phila Pa 1976); 1994 Aug; 19(15):1664-73. PubMed ID: 7973958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The load on the lumbar spine during asymmetrical bi-manual materials handling.
    Jäger M; Luttmann A
    Ergonomics; 1992; 35(7-8):783-805. PubMed ID: 1633789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Normal response to large posteroanterior lumbar loads--a case study approach.
    Lee M; Latimer J; Maher C
    J Manipulative Physiol Ther; 1997; 20(6):369-71. PubMed ID: 9272468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo measurements of spinal stiffness according to a stepwise increase of axial load.
    Glaus LS; Hofstetter L; Guekos A; Schweinhardt P; Swanenburg J
    Eur J Appl Physiol; 2021 Aug; 121(8):2277-2283. PubMed ID: 33956197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stiffness properties of the human lumbar spine: a lumped parameter model.
    Nicholson L; Maher C; Adams R; Phan-Thien N
    Clin Biomech (Bristol, Avon); 2001 May; 16(4):285-92. PubMed ID: 11358615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the behavior of a novel low-stiffness posterior spinal implant under anterior shear loading on a degenerative spinal model.
    Melnyk AD; Chak JD; Singh V; Kelly A; Cripton PA; Fisher CG; Dvorak MF; Oxland TR
    Eur Spine J; 2015 Apr; 24(4):775-82. PubMed ID: 25559294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.