These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 9755155)
1. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. Stewart EJ; Aslund F; Beckwith J EMBO J; 1998 Oct; 17(19):5543-50. PubMed ID: 9755155 [TBL] [Abstract][Full Text] [Related]
2. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. Prinz WA; Aslund F; Holmgren A; Beckwith J J Biol Chem; 1997 Jun; 272(25):15661-7. PubMed ID: 9188456 [TBL] [Abstract][Full Text] [Related]
3. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Derman AI; Prinz WA; Belin D; Beckwith J Science; 1993 Dec; 262(5140):1744-7. PubMed ID: 8259521 [TBL] [Abstract][Full Text] [Related]
4. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. Rietsch A; Bessette P; Georgiou G; Beckwith J J Bacteriol; 1997 Nov; 179(21):6602-8. PubMed ID: 9352906 [TBL] [Abstract][Full Text] [Related]
5. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Bessette PH; Aslund F; Beckwith J; Georgiou G Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13703-8. PubMed ID: 10570136 [TBL] [Abstract][Full Text] [Related]
6. Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of thioredoxin. Jurado P; de Lorenzo V; Fernández LA J Mol Biol; 2006 Mar; 357(1):49-61. PubMed ID: 16427080 [TBL] [Abstract][Full Text] [Related]
7. The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm. Debarbieux L; Beckwith J Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10751-6. PubMed ID: 9724776 [TBL] [Abstract][Full Text] [Related]
8. Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways. Faulkner MJ; Veeravalli K; Gon S; Georgiou G; Beckwith J Proc Natl Acad Sci U S A; 2008 May; 105(18):6735-40. PubMed ID: 18456836 [TBL] [Abstract][Full Text] [Related]
9. An engineered pathway for the formation of protein disulfide bonds. Masip L; Pan JL; Haldar S; Penner-Hahn JE; DeLisa MP; Georgiou G; Bardwell JC; Collet JF Science; 2004 Feb; 303(5661):1185-9. PubMed ID: 14976313 [TBL] [Abstract][Full Text] [Related]
10. Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Fernández LA; de Lorenzo V Mol Microbiol; 2001 Apr; 40(2):332-46. PubMed ID: 11309117 [TBL] [Abstract][Full Text] [Related]
11. trans-acting mutations in loci other than kdpDE that affect kdp operon regulation in Escherichia coli: effects of cytoplasmic thiol oxidation status and nucleoid protein H-NS on kdp expression. Sardesai AA; Gowrishankar J J Bacteriol; 2001 Jan; 183(1):86-93. PubMed ID: 11114904 [TBL] [Abstract][Full Text] [Related]
12. S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Jung CH; Thomas JA Arch Biochem Biophys; 1996 Nov; 335(1):61-72. PubMed ID: 8914835 [TBL] [Abstract][Full Text] [Related]
13. Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm. Eser M; Masip L; Kadokura H; Georgiou G; Beckwith J Proc Natl Acad Sci U S A; 2009 Feb; 106(5):1572-7. PubMed ID: 19164554 [TBL] [Abstract][Full Text] [Related]
14. Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin. Veine DM; Mulrooney SB; Wang PF; Williams CH Protein Sci; 1998 Jun; 7(6):1441-50. PubMed ID: 9655349 [TBL] [Abstract][Full Text] [Related]
15. Identification of the Thioredoxin Partner of Vitamin K Epoxide Reductase in Mycobacterial Disulfide Bond Formation. Ke N; Landeta C; Wang X; Boyd D; Eser M; Beckwith J J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784887 [TBL] [Abstract][Full Text] [Related]
16. Importance of redox potential for the in vivo function of the cytoplasmic disulfide reductant thioredoxin from Escherichia coli. Mössner E; Huber-Wunderlich M; Rietsch A; Beckwith J; Glockshuber R; Aslund F J Biol Chem; 1999 Sep; 274(36):25254-9. PubMed ID: 10464247 [TBL] [Abstract][Full Text] [Related]
17. A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo. Huber D; Cha MI; Debarbieux L; Planson AG; Cruz N; López G; Tasayco ML; Chaffotte A; Beckwith J Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18872-7. PubMed ID: 16357193 [TBL] [Abstract][Full Text] [Related]
18. The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol. Höög JO; Jörnvall H; Holmgren A; Carlquist M; Persson M Eur J Biochem; 1983 Oct; 136(1):223-32. PubMed ID: 6352262 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of the prokaryotic transmembrane disulfide reduction pathway and its in vitro reconstitution from purified components. Malojčić G; Geertsma ER; Brozzo MS; Glockshuber R Angew Chem Int Ed Engl; 2012 Jul; 51(28):6900-3. PubMed ID: 22674494 [TBL] [Abstract][Full Text] [Related]
20. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Trotter EW; Grant CM Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]