BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9755183)

  • 1. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction.
    Esposito D; Craigie R
    EMBO J; 1998 Oct; 17(19):5832-43. PubMed ID: 9755183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIV-1 integrase interaction with U3 and U5 terminal sequences in vitro defined using substrates with random sequences.
    Brin E; Leis J
    J Biol Chem; 2002 May; 277(21):18357-64. PubMed ID: 11897790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed zinc finger protein interacting with the HIV-1 integrase recognition sequence at 2-LTR-circle junctions.
    Sakkhachornphop S; Jiranusornkul S; Kodchakorn K; Nangola S; Sirisanthana T; Tayapiwatana C
    Protein Sci; 2009 Nov; 18(11):2219-30. PubMed ID: 19701937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-organized structure of viral DNA at the binding-processing site of HIV-1 integrase.
    Renisio JG; Cosquer S; Cherrak I; El Antri S; Mauffret O; Fermandjian S
    Nucleic Acids Res; 2005; 33(6):1970-81. PubMed ID: 15814814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat Ends.
    Chen A; Weber IT; Harrison RW; Leis J
    J Biol Chem; 2006 Feb; 281(7):4173-82. PubMed ID: 16298997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function analysis of integrase interactor 1/hSNF5L1 reveals differential properties of two repeat motifs present in the highly conserved region.
    Morozov A; Yung E; Kalpana GV
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):1120-5. PubMed ID: 9448295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV-1 Integrase Assembles Multiple Species of Stable Synaptic Complex Intasomes That Are Active for Concerted DNA Integration In vitro.
    Li M; Yang R; Chen X; Wang H; Ghirlando R; Dimitriadis EK; Craigie R
    J Mol Biol; 2024 May; 436(10):168557. PubMed ID: 38582148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimal core domain of HIV-1 integrase for biological activity.
    Kim DJ; Lee SK; Oh YT; Shin CG
    Mol Cells; 2000 Feb; 10(1):96-101. PubMed ID: 10774754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of integration activity of human immunodeficiency virus type-1 integrase.
    Kim DJ; Oh YT; Lee SK; Shin CG
    Mol Cells; 1999 Aug; 9(4):446-51. PubMed ID: 10515611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-angle X-ray characterization of the nucleoprotein complexes resulting from DNA-induced oligomerization of HIV-1 integrase.
    Baranova S; Tuzikov FV; Zakharova OD; Tuzikova NA; Calmels C; Litvak S; Tarrago-Litvak L; Parissi V; Nevinsky GA
    Nucleic Acids Res; 2007; 35(3):975-87. PubMed ID: 17259219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cheminformatics methods for novel nanopore analysis of HIV DNA termini.
    Winters-Hilt S; Landry M; Akeson M; Tanase M; Amin I; Coombs A; Morales E; Millet J; Baribault C; Sendamangalam S
    BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S22. PubMed ID: 17118144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of HIV-1 RRE stem-loop II identifies two conformational states of the high-affinity Rev binding site.
    Tipo J; Gottipati K; Slaton M; Gonzalez-Gutierrez G; Choi KH
    Nat Commun; 2024 May; 15(1):4198. PubMed ID: 38760344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA ultra-sensitive quantification, a technology for studying HIV unintegrated linear DNA.
    Roux HM; Figueiredo S; Sareoua L; Salmona M; Hamroune J; Adoux L; Migraine J; Hance A; Clavel F; Cheynier R; Dutrieux J
    Cell Rep Methods; 2023 Apr; 3(4):100443. PubMed ID: 37159665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ty1 integrase is composed of an active N-terminal domain and a large disordered C-terminal module dispensable for its activity in vitro.
    Nguyen PQ; Conesa C; Rabut E; Bragagnolo G; Gouzerh C; Fernández-Tornero C; Lesage P; Reguera J; Acker J
    J Biol Chem; 2021 Oct; 297(4):101093. PubMed ID: 34416236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants.
    Smith SJ; Zhao XZ; Passos DO; Pye VE; Cherepanov P; Lyumkis D; Burke TR; Hughes SH
    ACS Infect Dis; 2021 Jun; 7(6):1469-1482. PubMed ID: 33686850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs.
    Smith SJ; Zhao XZ; Passos DO; Lyumkis D; Burke TR; Hughes SH
    Viruses; 2021 Jan; 13(2):. PubMed ID: 33572956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NKNK: a New Essential Motif in the C-Terminal Domain of HIV-1 Group M Integrases.
    Kanja M; Cappy P; Levy N; Oladosu O; Schmidt S; Rossolillo P; Winter F; Gasser R; Moog C; Ruff M; Negroni M; Lener D
    J Virol; 2020 Sep; 94(20):. PubMed ID: 32727879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Nonviral Stable Transgenesis Mediated by Retroviral Integrase.
    Chiang CY; Ligunas GD; Chin WC; Ni CW
    Mol Ther Methods Clin Dev; 2020 Jun; 17():1061-1070. PubMed ID: 32462054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different Pathways Leading to Integrase Inhibitors Resistance.
    Thierry E; Deprez E; Delelis O
    Front Microbiol; 2016; 7():2165. PubMed ID: 28123383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity for strand-transfer over 3'-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme-DNA interactions in the active site.
    Métifiot M; Johnson BC; Kiselev E; Marler L; Zhao XZ; Burke TR; Marchand C; Hughes SH; Pommier Y
    Nucleic Acids Res; 2016 Aug; 44(14):6896-906. PubMed ID: 27369381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.