These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Ignarro LJ; Buga GM; Wei LH; Bauer PM; Wu G; del Soldato P Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4202-8. PubMed ID: 11259671 [TBL] [Abstract][Full Text] [Related]
3. Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-L-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Singh R; Pervin S; Karimi A; Cederbaum S; Chaudhuri G Cancer Res; 2000 Jun; 60(12):3305-12. PubMed ID: 10866325 [TBL] [Abstract][Full Text] [Related]
4. Activation of caspase-3 activity and apoptosis in MDA-MB-468 cells by N(omega)-hydroxy-L-arginine, an inhibitor of arginase, is not solely dependent on reduction in intracellular polyamines. Singh R; Pervin S; Wu G; Chaudhuri G Carcinogenesis; 2001 Nov; 22(11):1863-9. PubMed ID: 11698350 [TBL] [Abstract][Full Text] [Related]
5. Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Buga GM; Singh R; Pervin S; Rogers NE; Schmitz DA; Jenkinson CP; Cederbaum SD; Ignarro LJ Am J Physiol; 1996 Nov; 271(5 Pt 2):H1988-98. PubMed ID: 8945918 [TBL] [Abstract][Full Text] [Related]
6. Intracellular sources of ornithine for polyamine synthesis in endothelial cells. Li H; Meininger CJ; Bazer FW; Wu G Amino Acids; 2016 Oct; 48(10):2401-10. PubMed ID: 27180260 [TBL] [Abstract][Full Text] [Related]
7. Liver I/R injury is improved by the arginase inhibitor, N(omega)-hydroxy-nor-L-arginine (nor-NOHA). Reid KM; Tsung A; Kaizu T; Jeyabalan G; Ikeda A; Shao L; Wu G; Murase N; Geller DA Am J Physiol Gastrointest Liver Physiol; 2007 Feb; 292(2):G512-7. PubMed ID: 17023552 [TBL] [Abstract][Full Text] [Related]
8. Involvement of NO in the endothelium-independent relaxing effects of N(omega)-hydroxy-L-arginine and other compounds bearing a C=NOH function in the rat aorta. Vetrovsky P; Boucher JL; Schott C; Beranova P; Chalupsky K; Callizot N; Muller B; Entlicher G; Mansuy D; Stoclet JC J Pharmacol Exp Ther; 2002 Nov; 303(2):823-30. PubMed ID: 12388669 [TBL] [Abstract][Full Text] [Related]
9. Albumin stimulates cell growth, l-arginine transport, and metabolism to polyamines in human proximal tubular cells. Ashman N; Harwood SM; Kieswich J; Allen DA; Roberts NB; Mendes-Ribeiro AC; Yaqoob MM Kidney Int; 2005 May; 67(5):1878-89. PubMed ID: 15840035 [TBL] [Abstract][Full Text] [Related]
10. Ornithine decarboxylase and polyamines in tissues of the neonatal rat: effects of alpha-difluoromethylornithine, a specific, irreversible inhibitor of ornithine decarboxylase. Slotkin TA; Seidler FJ; Trepanier PA; Whitmore WL; Lerea L; Barnes GA; Weigel SJ; Bartolome J J Pharmacol Exp Ther; 1982 Sep; 222(3):741-5. PubMed ID: 6809932 [TBL] [Abstract][Full Text] [Related]
11. Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity. Meurs H; Hamer MA; Pethe S; Vadon-Le Goff S; Boucher JL; Zaagsma J Br J Pharmacol; 2000 Aug; 130(8):1793-8. PubMed ID: 10952667 [TBL] [Abstract][Full Text] [Related]
12. The vascular effects of different arginase inhibitors in rat isolated aorta and mesenteric arteries. Huynh NN; Harris EE; Chin-Dusting JF; Andrews KL Br J Pharmacol; 2009 Jan; 156(1):84-93. PubMed ID: 19133993 [TBL] [Abstract][Full Text] [Related]
13. Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Theiss C; Bohley P; Voigt J Plant Physiol; 2002 Apr; 128(4):1470-9. PubMed ID: 11950995 [TBL] [Abstract][Full Text] [Related]
14. Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide. Zhao YJ; Xu CQ; Zhang WH; Zhang L; Bian SL; Huang Q; Sun HL; Li QF; Zhang YQ; Tian Y; Wang R; Yang BF; Li WM Eur J Pharmacol; 2007 May; 562(3):236-46. PubMed ID: 17382924 [TBL] [Abstract][Full Text] [Related]
15. Early developmental profile of ornithine decarboxylase in the frog, Microhyla ornata and its regulation by polyamines. Joseph K; Baby TG J Exp Zool; 1991 May; 258(2):158-63. PubMed ID: 2022946 [TBL] [Abstract][Full Text] [Related]
16. Rat colon ornithine and arginine metabolism: coordinated effects after proliferative stimuli. Han X; Kazarinoff MN; Seiler N; Stanley BA Am J Physiol Gastrointest Liver Physiol; 2001 Mar; 280(3):G389-99. PubMed ID: 11171621 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of polyamine biosynthesis in Crithidia fasciculata by D,L-alpha-difluoromethylornithine and D,L-alpha-difluoromethylarginine. Hunter KJ; Strobos CA; Fairlamb AH Mol Biochem Parasitol; 1991 May; 46(1):35-43. PubMed ID: 1852175 [TBL] [Abstract][Full Text] [Related]
18. L-arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways. Piacenza L; Peluffo G; Radi R Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7301-6. PubMed ID: 11404465 [TBL] [Abstract][Full Text] [Related]
19. Regulation of casein synthesis by polyamines in mammary gland explants of mice. Rillema JA; Linebaugh BE; Mulder JA Endocrinology; 1977 Feb; 100(2):529-36. PubMed ID: 188630 [TBL] [Abstract][Full Text] [Related]
20. Polyamine-dependent growth and calmodulin-regulated induction of ornithine decarboxylase. Ginty DD; Seidel ER Am J Physiol; 1989 Feb; 256(2 Pt 1):G342-8. PubMed ID: 2493197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]