These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9756603)

  • 1. beta-Amyloid precursor protein and ss-amyloid peptide immunoreactivity in the rat brain after middle cerebral artery occlusion: effect of age.
    Popa-Wagner A; Schröder E; Walker LC; Kessler C
    Stroke; 1998 Oct; 29(10):2196-202. PubMed ID: 9756603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats.
    Badan I; Platt D; Kessler C; Popa-Wagner A
    Gerontology; 2003; 49(6):356-65. PubMed ID: 14624064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upregulation of MAP1B and MAP2 in the rat brain after middle cerebral artery occlusion: effect of age.
    Popa-Wagner A; Schröder E; Schmoll H; Walker LC; Kessler C
    J Cereb Blood Flow Metab; 1999 Apr; 19(4):425-34. PubMed ID: 10197512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats.
    Lee TH; Kato H; Chen ST; Kogure K; Itoyama Y
    Stroke; 1998 Aug; 29(8):1687-96; discussion 1697. PubMed ID: 9707213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-ischemic changes in the expression of Alzheimer's APP isoforms in rat cerebral cortex.
    Kim HS; Lee SH; Kim SS; Kim YK; Jeong SJ; Ma J; Han DH; Cho BK; Suh YH
    Neuroreport; 1998 Feb; 9(3):533-7. PubMed ID: 9512402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1, BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats.
    Chuang CM; Hsieh CL; Lin HY; Lin JG
    Am J Chin Med; 2008; 36(4):685-93. PubMed ID: 18711766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of growth inhibitory factor (GIF) and glial fibrillary acidic protein relative level changes differ following left middle cerebral artery occlusion in rats.
    Inuzuka T; Hozumi I; Tamura A; Hiraiwa M; Tsuji S
    Brain Res; 1996 Feb; 709(1):151-31. PubMed ID: 8869568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats.
    van Groen T; Puurunen K; Mäki HM; Sivenius J; Jolkkonen J
    Stroke; 2005 Jul; 36(7):1551-6. PubMed ID: 15933257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the amyloid ß-protein and its precursor in modulating cerebral hemostasis.
    Van Nostrand WE
    Biochim Biophys Acta; 2016 May; 1862(5):1018-26. PubMed ID: 26519139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of the beta amyloid precursor protein at sites of ischemic injury in rat brain.
    Kalaria RN; Bhatti SU; Palatinsky EA; Pennington DH; Shelton ER; Chan HW; Perry G; Lust WD
    Neuroreport; 1993 Feb; 4(2):211-4. PubMed ID: 8453062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and distribution of beta amyloid precursor protein and beta amyloid peptide in reactive astrocytes after transient middle cerebral artery occlusion.
    Nihashi T; Inao S; Kajita Y; Kawai T; Sugimoto T; Niwa M; Kabeya R; Hata N; Hayashi S; Yoshida J
    Acta Neurochir (Wien); 2001; 143(3):287-95. PubMed ID: 11460917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats.
    Lehrmann E; Kiefer R; Christensen T; Toyka KV; Zimmer J; Diemer NH; Hartung HP; Finsen B
    Glia; 1998 Dec; 24(4):437-48. PubMed ID: 9814824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyloid precursor protein accumulates in regions of neurodegeneration following focal cerebral ischemia in the rat.
    Stephenson DT; Rash K; Clemens JA
    Brain Res; 1992 Oct; 593(1):128-35. PubMed ID: 1458315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the duration of hyperlipidemia on cerebral lipids, vessels and neurons in rats.
    Yang W; Shi H; Zhang J; Shen Z; Zhou G; Hu M
    Lipids Health Dis; 2017 Jan; 16(1):26. PubMed ID: 28143622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery.
    Badan I; Buchhold B; Hamm A; Gratz M; Walker LC; Platt D; Kessler Ch; Popa-Wagner A
    J Cereb Blood Flow Metab; 2003 Jul; 23(7):845-54. PubMed ID: 12843788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between age, cerebral small vessel disease, parenchymal amyloid-β, and tau pathology: longitudinal studies in hypertensive stroke-prone rats.
    Schreiber S; Drukarch B; Garz C; Niklass S; Stanaszek L; Kropf S; Bueche C; Held F; Vielhaber S; Attems J; Reymann KG; Heinze HJ; Carare RO; Wilhelmus MM
    J Alzheimers Dis; 2014; 42 Suppl 3():S205-15. PubMed ID: 24825568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cathepsin B and middle cerebral artery occlusion in the rat.
    Seyfried D; Han Y; Zheng Z; Day N; Moin K; Rempel S; Sloane B; Chopp M
    J Neurosurg; 1997 Nov; 87(5):716-23. PubMed ID: 9347980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal cerebral ischemia enhances glial expression of ecto-5'-nucleotidase.
    Braun N; Lenz C; Gillardon F; Zimmermann M; Zimmermann H
    Brain Res; 1997 Aug; 766(1-2):213-26. PubMed ID: 9359605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the level of glial fibrillary acidic protein (GFAP) after mild and severe focal cerebral ischemia.
    Cheung WM; Wang CK; Kuo JS; Lin TN
    Chin J Physiol; 1999 Dec; 42(4):227-35. PubMed ID: 10707898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic Cerebral Hypoperfusion Promotes Amyloid-Beta Pathogenesis via Activating β/γ-Secretases.
    Cai Z; Liu Z; Xiao M; Wang C; Tian F
    Neurochem Res; 2017 Dec; 42(12):3446-3455. PubMed ID: 28836062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.