These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9756655)

  • 21. Sedimentation behaviour in electrorheological fluids based on suspensions of zeolite particles in silicone oil.
    Prekas K; Shah T; Soin N; Rangoussi M; Vassiliadis S; Siores E
    J Colloid Interface Sci; 2013 Jul; 401():58-64. PubMed ID: 23623409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surfactant-Switched Positive/Negative Electrorheological Effect in Tungsten Oxide Suspensions.
    Agafonov AV; Kraev AS; Kusova TV; Evdokimova OL; Ivanova OS; Baranchikov AE; Shekunova TO; Kozyukhin SA
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31540041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio.
    Noh J; Yoon CM; Jang J
    J Colloid Interface Sci; 2016 May; 470():237-244. PubMed ID: 26950396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions.
    Saimoto Y; Satoh T; Konno M
    J Colloid Interface Sci; 1999 Nov; 219(1):135-143. PubMed ID: 10527579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural explanation of the rheology of a colloidal suspension under high dc electric fields.
    Espín MJ; Delgado AV; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved electrorheological effect in polyaniline nanocomposite suspensions.
    Lim YT; Park JH; Park OO
    J Colloid Interface Sci; 2002 Jan; 245(1):198-203. PubMed ID: 16290350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic interfacial tension measurement under electric fields allows detection of charge carriers in nonpolar liquids.
    Sengupta R; Khair AS; Walker LM
    J Colloid Interface Sci; 2020 May; 567():18-27. PubMed ID: 32035390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequential Adsorption of Triton X-100 and Sodium Dodecyl Sulfate onto Positively and Negatively Charged Polystyrene Latexes.
    Porcel R; Jódar AB; Cabrerizo MA; Hidalgo-Álvarez R; Martín-Rodríguez A
    J Colloid Interface Sci; 2001 Jul; 239(2):568-576. PubMed ID: 11427025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetite/Poly(ortho-anisidine) Composite Particles and Their Electrorheological Response.
    Lu Q; Lee JH; Lee JH; Choi HJ
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Negative electrorheological behavior in suspensions of inorganic particles.
    Ramos-Tejada MM; Arroyo FJ; Delgado AV
    Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2012 Jul; 377(1):396-405. PubMed ID: 22487228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dielectric and electrical properties of electrorheological carbon suspensions.
    Negita K; Misono Y; Yamaguchi T; Shinagawa J
    J Colloid Interface Sci; 2008 May; 321(2):452-8. PubMed ID: 18342876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pickering Emulsion Polymerized Polyaniline/Zinc-ferrite Composite Particles and Their Dual Electrorheological and Magnetorheological Responses.
    Kim JN; Dong YZ; Choi HJ
    ACS Omega; 2020 Apr; 5(13):7675-7682. PubMed ID: 32280911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2010 Dec; 352(1):128-35. PubMed ID: 20817195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrokinetic behavior and colloidal stability of polystyrene latex coated with ionic surfactants.
    Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A
    J Colloid Interface Sci; 2006 May; 297(1):170-81. PubMed ID: 16289188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shedding light on the different behavior of ionic and nonionic surfactants in emulsion polymerization: from atomistic simulations to experimental observations.
    Magi Meconi G; Ballard N; Asua JM; Zangi R
    Phys Chem Chem Phys; 2017 Dec; 19(47):31692-31705. PubMed ID: 29165448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Response of surfactant stabilized oil-in-water emulsions to the addition of particles in an aqueous suspension.
    Katepalli H; Bose A
    Langmuir; 2014 Nov; 30(43):12736-42. PubMed ID: 25312030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semi-conducting microspheres formed from glucose for semi-active electric field-responsive electrorheological systems.
    Kutalkova E; Plachy T
    Soft Matter; 2022 Dec; 18(47):9037-9044. PubMed ID: 36409202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrorheological behavior of suspensions of a substituted polyaniline with long alkyl pendants.
    Woo DJ; Suh MH; Shin ES; Lee CW; Lee SH
    J Colloid Interface Sci; 2005 Aug; 288(1):71-4. PubMed ID: 15927563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental investigation of the frequency dependence of the electrorheological effect.
    Lan Y; Huang CK; Men S; Lu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021507. PubMed ID: 15447496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.