These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 9756668)
1. Evaluation of the Structure and Acid-Base Properties of Bulk Wood by FT-Raman Spectroscopy. Shen Q; Rahiala H; Rosenholm JB J Colloid Interface Sci; 1998 Oct; 206(2):558-568. PubMed ID: 9756668 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the surface properties of persimmon leaves by FT-Raman spectroscopy and wicking technique. Shen Q; Ding HG; Zhong L Colloids Surf B Biointerfaces; 2004 Sep; 37(3-4):133-6. PubMed ID: 15342023 [TBL] [Abstract][Full Text] [Related]
3. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds. Nuopponen M; Willför S; Jääskeläinen AS; Sundberg A; Vuorinen T Spectrochim Acta A Mol Biomol Spectrosc; 2004 Nov; 60(13):2953-61. PubMed ID: 15477130 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the surface properties of xylan by FT-Raman spectroscopy and wicking technique. Shen Q; Zhong L; Hu JF Colloids Surf B Biointerfaces; 2004 Dec; 39(4):195-8. PubMed ID: 15555903 [TBL] [Abstract][Full Text] [Related]
5. Volume 206, Number 2 (1998), in Article No. CS985738, "Evaluation of the Structure and Acid-Base Properties of Bulk Wood by FT-Raman Spectroscopy," by Qing Shen, Hanna Rahiala, and Jarl B. Rosenholm, pages 558-568. J Colloid Interface Sci; 1999 Jan; 209(2):449. PubMed ID: 9885277 [No Abstract] [Full Text] [Related]
6. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617 [TBL] [Abstract][Full Text] [Related]
7. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy. Nuopponen MH; Birch GM; Sykes RJ; Lee SJ; Stewart D J Agric Food Chem; 2006 Jan; 54(1):34-40. PubMed ID: 16390174 [TBL] [Abstract][Full Text] [Related]
8. Spectral characterization of eucalyptus wood. Popescu CM; Popescu MC; Singurel G; Vasile C; Argyropoulos DS; Willfor S Appl Spectrosc; 2007 Nov; 61(11):1168-77. PubMed ID: 18028695 [TBL] [Abstract][Full Text] [Related]
9. On Neglecting the Polar Nature of Halogenated Hydrocarbons in the Surface Energy Determination of Polar Solids from Contact Angle Measurements. Tretinnikov ON J Colloid Interface Sci; 2000 Sep; 229(2):644-647. PubMed ID: 10985847 [TBL] [Abstract][Full Text] [Related]
10. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Zhu JY; Pan XJ; Wang GS; Gleisner R Bioresour Technol; 2009 Apr; 100(8):2411-8. PubMed ID: 19119005 [TBL] [Abstract][Full Text] [Related]
11. Quantitative solid state NMR analysis of residues from acid hydrolysis of loblolly pine wood. Sievers C; Marzialetti T; Hoskins TJ; Valenzuela Olarte MB; Agrawal PK; Jones CW Bioresour Technol; 2009 Oct; 100(20):4758-65. PubMed ID: 19477123 [TBL] [Abstract][Full Text] [Related]
12. Identification of QTLs influencing wood property traits in loblolly pine ( Pinus taeda L.). II. Chemical wood properties. Sewell MM; Davis MF; Tuskan GA; Wheeler NC; Elam CC; Bassoni DL; Neale DB Theor Appl Genet; 2002 Feb; 104(2-3):214-222. PubMed ID: 12582689 [TBL] [Abstract][Full Text] [Related]
13. Mid-infrared diffuse reflectance spectroscopic examination of charred pine wood, bark, cellulose, and lignin: implications for the quantitative determination of charcoal in soils. Reeves JB; McCarty GW; Rutherford DW; Wershaw RL Appl Spectrosc; 2008 Feb; 62(2):182-9. PubMed ID: 18284794 [TBL] [Abstract][Full Text] [Related]
14. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Gündüz G; Korkut S; Korkut DS Bioresour Technol; 2008 May; 99(7):2275-80. PubMed ID: 17604619 [TBL] [Abstract][Full Text] [Related]
15. Conformational Structure of Triblock Copolymers by FT-Raman and FTIR Spectroscopy. Guo C; Liu H; Wang J; Chen J J Colloid Interface Sci; 1999 Jan; 209(2):368-373. PubMed ID: 9885264 [TBL] [Abstract][Full Text] [Related]
16. Relevance of Film Pressures to Interfacial Tension, Miscibility of Liquids, and Lewis Acid-Base Approach. Lee LH J Colloid Interface Sci; 1999 Jun; 214(1):64-78. PubMed ID: 10328897 [TBL] [Abstract][Full Text] [Related]
17. Estimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers from Contact Angle Measurements. Adão MH; Saramago BJ; Fernandes AC J Colloid Interface Sci; 1999 Sep; 217(1):94-106. PubMed ID: 10441415 [TBL] [Abstract][Full Text] [Related]
18. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Pan X; Xie D; Yu RW; Saddler JN Biotechnol Bioeng; 2008 Sep; 101(1):39-48. PubMed ID: 18421796 [TBL] [Abstract][Full Text] [Related]
19. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds. Nuopponen M; Willför S; Jääskeläinen AS; Vuorinen T Spectrochim Acta A Mol Biomol Spectrosc; 2004 Nov; 60(13):2963-8. PubMed ID: 15477131 [TBL] [Abstract][Full Text] [Related]
20. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. Capanema EA; Balakshin MY; Kadla JF J Agric Food Chem; 2005 Dec; 53(25):9639-49. PubMed ID: 16332110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]