BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 9756860)

  • 1. Involvement of waaY, waaQ, and waaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane.
    Yethon JA; Heinrichs DE; Monteiro MA; Perry MB; Whitfield C
    J Biol Chem; 1998 Oct; 273(41):26310-6. PubMed ID: 9756860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lipopolysaccharide biosynthesis mutations on K1 polysaccharide association with the Escherichia coli cell surface.
    Jiménez N; Senchenkova SN; Knirel YA; Pieretti G; Corsaro MM; Aquilini E; Regué M; Merino S; Tomás JM
    J Bacteriol; 2012 Jul; 194(13):3356-67. PubMed ID: 22522903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of a novel 3-deoxy-D-manno-oct-2-ulosonic acid-containing outer core oligosaccharide in the lipopolysaccharide of Klebsiella pneumoniae.
    Frirdich E; Vinogradov E; Whitfield C
    J Biol Chem; 2004 Jul; 279(27):27928-40. PubMed ID: 15090547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salmonella enterica serovar typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence In vivo.
    Yethon JA; Gunn JS; Ernst RK; Miller SI; Laroche L; Malo D; Whitfield C
    Infect Immun; 2000 Aug; 68(8):4485-91. PubMed ID: 10899846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of WaaP from Escherichia coli, a lipopolysaccharide kinase essential for outer membrane stability.
    Yethon JA; Whitfield C
    J Biol Chem; 2001 Feb; 276(8):5498-504. PubMed ID: 11069912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa.
    Walsh AG; Matewish MJ; Burrows LL; Monteiro MA; Perry MB; Lam JS
    Mol Microbiol; 2000 Feb; 35(4):718-27. PubMed ID: 10692150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal and plasmid-encoded enzymes are required for assembly of the R3-type core oligosaccharide in the lipopolysaccharide of Escherichia coli O157:H7.
    Kaniuk NA; Vinogradov E; Li J; Monteiro MA; Whitfield C
    J Biol Chem; 2004 Jul; 279(30):31237-50. PubMed ID: 15155763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation.
    Yethon JA; Vinogradov E; Perry MB; Whitfield C
    J Bacteriol; 2000 Oct; 182(19):5620-3. PubMed ID: 10986272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12.
    Parker CT; Kloser AW; Schnaitman CA; Stein MA; Gottesman S; Gibson BW
    J Bacteriol; 1992 Apr; 174(8):2525-38. PubMed ID: 1348243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural investigation on the lipopolysaccharide of Escherichia coli rough mutant F653 representing the R3 core type.
    Haishima Y; Holst O; Brade H
    Eur J Biochem; 1992 Jan; 203(1-2):127-34. PubMed ID: 1730218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structures of the carbohydrate backbones of the lipopolysaccharides from Escherichia coli rough mutants F470 (R1 core type) and F576 (R2 core type).
    Vinogradov EV; Van Der Drift K; Thomas-Oates JE; Meshkov S; Brade H; Holst O
    Eur J Biochem; 1999 May; 261(3):629-39. PubMed ID: 10215878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the waaZ gene leads to modification of the structure of the inner core region of Escherichia coli lipopolysaccharide, truncation of the outer core, and reduction of the amount of O polysaccharide on the cell surface.
    Frirdich E; Lindner B; Holst O; Whitfield C
    J Bacteriol; 2003 Mar; 185(5):1659-71. PubMed ID: 12591884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence of OMP inclusion bodies in a Escherichia coli K-12 mutated strain is not related to lipopolysaccharide structure.
    Corsaro MM; Parrilli E; Lanzetta R; Naldi T; Pieretti G; Lindner B; Carpentieri A; Parrilli M; Tutino ML
    J Biochem; 2009 Aug; 146(2):231-40. PubMed ID: 19364804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of galacturonic acid in outer membrane stability in Klebsiella pneumoniae.
    Frirdich E; Bouwman C; Vinogradov E; Whitfield C
    J Biol Chem; 2005 Jul; 280(30):27604-12. PubMed ID: 15929980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant.
    Reynolds CM; Kalb SR; Cotter RJ; Raetz CR
    J Biol Chem; 2005 Jun; 280(22):21202-11. PubMed ID: 15795227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: insertion mutagenesis of the rfa locus.
    Austin EA; Graves JF; Hite LA; Parker CT; Schnaitman CA
    J Bacteriol; 1990 Sep; 172(9):5312-25. PubMed ID: 2168379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The assembly system for the outer core portion of R1- and R4-type lipopolysaccharides of Escherichia coli. The R1 core-specific beta-glucosyltransferase provides a novel attachment site for O-polysaccharides.
    Heinrichs DE; Yethon JA; Amor PA; Whitfield C
    J Biol Chem; 1998 Nov; 273(45):29497-505. PubMed ID: 9792656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the phosphocholine-substituted oligosaccharide in lipopolysaccharides of type b Haemophilus influenzae.
    Schweda EK; Brisson JR; Alvelius G; Martin A; Weiser JN; Hood DW; Moxon ER; Richards JC
    Eur J Biochem; 2000 Jun; 267(12):3902-13. PubMed ID: 10849010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: incorporation of glucuronic acid and phosphoethanolamine in the heptose region.
    Klein G; Müller-Loennies S; Lindner B; Kobylak N; Brade H; Raina S
    J Biol Chem; 2013 Mar; 288(12):8111-8127. PubMed ID: 23372159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine.
    Møller AK; Leatham MP; Conway T; Nuijten PJ; de Haan LA; Krogfelt KA; Cohen PS
    Infect Immun; 2003 Apr; 71(4):2142-52. PubMed ID: 12654836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.