These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9756934)

  • 1. Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae.
    Treger JM; Schmitt AP; Simon JR; McEntee K
    J Biol Chem; 1998 Oct; 273(41):26875-9. PubMed ID: 9756934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.
    Simon JR; Treger JM; McEntee K
    Mol Microbiol; 1999 Feb; 31(3):823-32. PubMed ID: 10048026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner.
    AmorĂ³s M; Estruch F
    Mol Microbiol; 2001 Mar; 39(6):1523-32. PubMed ID: 11260469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors.
    Seymour IJ; Piper PW
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons.
    Boy-Marcotte E; Lagniel G; Perrot M; Bussereau F; Boudsocq A; Jacquet M; Labarre J
    Mol Microbiol; 1999 Jul; 33(2):274-83. PubMed ID: 10411744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic coalescence of yeast Heat Shock Protein genes bypasses the requirement for actin.
    Rubio LS; Gross DS
    Genetics; 2023 Apr; 223(4):. PubMed ID: 36659814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient intracellular acidification regulates the core transcriptional heat shock response.
    Triandafillou CG; Katanski CD; Dinner AR; Drummond DA
    Elife; 2020 Aug; 9():. PubMed ID: 32762843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae.
    Yamamoto A; Mizukami Y; Sakurai H
    J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements.
    Hashikawa N; Yamamoto N; Sakurai H
    J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae.
    Garreau H; Hasan RN; Renault G; Estruch F; Boy-Marcotte E; Jacquet M
    Microbiology (Reading); 2000 Sep; 146 ( Pt 9)():2113-2120. PubMed ID: 10974099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat Shock Factor 1 Drives Intergenic Association of Its Target Gene Loci upon Heat Shock.
    Chowdhary S; Kainth AS; Pincus D; Gross DS
    Cell Rep; 2019 Jan; 26(1):18-28.e5. PubMed ID: 30605674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size doesn't matter in the heat shock response.
    Pincus D
    Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying gene regulatory modules of heat shock response in yeast.
    Wu WS; Li WH
    BMC Genomics; 2008 Sep; 9():439. PubMed ID: 18811975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.
    Izawa S; Kita T; Ikeda K; Inoue Y
    Biochem J; 2008 Aug; 414(1):111-9. PubMed ID: 18442359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.