BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 9757029)

  • 1. Regulation of PAX-6 gene transcription: alternate promoter usage in human brain.
    Okladnova O; Syagailo YV; Mössner R; Riederer P; Lesch KP
    Brain Res Mol Brain Res; 1998 Oct; 60(2):177-92. PubMed ID: 9757029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of cell division and gene transcription in the methylation of CpG islands.
    Bender CM; Gonzalgo ML; Gonzales FA; Nguyen CT; Robertson KD; Jones PA
    Mol Cell Biol; 1999 Oct; 19(10):6690-8. PubMed ID: 10490608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroendocrine differentiation factor, IA-1, is a transcriptional repressor and contains a specific DNA-binding domain: identification of consensus IA-1 binding sequence.
    Breslin MB; Zhu M; Notkins AL; Lan MS
    Nucleic Acids Res; 2002 Feb; 30(4):1038-45. PubMed ID: 11842116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional studies of the 5'-untranslated region of human 5-HT4 receptor mRNA.
    Maillet M; Gastineau M; Bochet P; Asselin-Labat ML; Morel E; Laverrière JN; Lompré AM; Fischmeister R; Lezoualc'h F
    Biochem J; 2005 Apr; 387(Pt 2):463-71. PubMed ID: 15575821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and epigenetic features of promoters with ubiquitous chromatin accessibility support ubiquitous transcription of cell-essential genes.
    Fan K; Moore JE; Zhang XO; Weng Z
    Nucleic Acids Res; 2021 Jun; 49(10):5705-5725. PubMed ID: 33978759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-terminally truncated FOXP1 protein expression and alternate internal FOXP1 promoter usage in normal and malignant B cells.
    Brown PJ; Gascoyne DM; Lyne L; Spearman H; Felce SL; McFadden N; Chakravarty P; Barrans S; Lynham S; Calado DP; Ward M; Banham AH
    Haematologica; 2016 Jul; 101(7):861-71. PubMed ID: 27056922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octamer binding protein 2 (Oct2) regulates PD-L2 gene expression in B-1 cells through lineage-specific activity of a unique, intronic promoter.
    Kaku H; Rothstein TL
    Genes Immun; 2010 Jan; 11(1):55-66. PubMed ID: 19710692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation.
    Lux H; Flammann H; Hafner M; Lux A
    PLoS One; 2010 Jan; 5(1):e8686. PubMed ID: 20084274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription initiation mapping in 31 bovine tissues reveals complex promoter activity, pervasive transcription, and tissue-specific promoter usage.
    Goszczynski DE; Halstead MM; Islas-Trejo AD; Zhou H; Ross PJ
    Genome Res; 2021 Apr; 31(4):732-744. PubMed ID: 33722934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genomic structure of the human UBE1L gene.
    Kok K; Van den Berg A; Veldhuis PM; Franke M; Terpstra P; Buys CH
    Gene Expr; 1995; 4(3):163-75. PubMed ID: 7734949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential gene expression activity among species-specific polypyrimidine/polypurine motifs in mu opioid receptor gene promoters.
    Choe CY; Dong J; Law PY; Loh HH
    Gene; 2011 Jan; 471(1-2):27-36. PubMed ID: 20946943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pax-8: Molecular biology, pathophysiology, and potential pathogenesis.
    Zhou Q; Li H; Cheng Y; Ma X; Tang S; Tang C
    Biofactors; 2024; 50(3):408-421. PubMed ID: 37988248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal transcriptional regulation of dynamic bacterial responses to sudden drug exposures.
    Schultz D; Stevanovic M; Tsimring LS
    Biophys J; 2022 Nov; 121(21):4137-4152. PubMed ID: 36168291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory promoter architectures in the hands of thermodynamic modelling.
    Collado-Vides J
    Nat Rev Genet; 2023 Jun; 24(6):349. PubMed ID: 36747003
    [No Abstract]   [Full Text] [Related]  

  • 15. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches.
    Daruich A; Duncan M; Robert MP; Lagali N; Semina EV; Aberdam D; Ferrari S; Romano V; des Roziers CB; Benkortebi R; De Vergnes N; Polak M; Chiambaretta F; Nischal KK; Behar-Cohen F; Valleix S; Bremond-Gignac D
    Prog Retin Eye Res; 2023 Jul; 95():101133. PubMed ID: 36280537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoregulation of Pax6 in neuronal cells is mediated by Pax6(5a), Pax6(ΔPD), SPARC, and p53.
    Shukla S; Mishra R
    Mol Biol Rep; 2022 Apr; 49(4):3271-3279. PubMed ID: 35103896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Level of hydrogen peroxide affects expression and sub-cellular localization of Pax6.
    Shukla S; Mishra R
    Mol Biol Rep; 2018 Aug; 45(4):533-540. PubMed ID: 29770908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of different mechanisms leading to PAX6 down-regulation as potential events contributing to the onset of Hirschsprung disease.
    Enguix-Riego MV; Torroglosa A; Fernández RM; Moya-Jiménez MJ; de Agustín JC; Antiñolo G; Borrego S
    Sci Rep; 2016 Feb; 6():21160. PubMed ID: 26879676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1.
    Hou PS; Chuang CY; Kao CF; Chou SJ; Stone L; Ho HN; Chien CL; Kuo HC
    Nucleic Acids Res; 2013 Sep; 41(16):7753-70. PubMed ID: 23804753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Pax6 with SPARC and p53 in brain of mice indicates Smad3 dependent auto-regulation.
    Tripathi R; Mishra R
    J Mol Neurosci; 2010 Jul; 41(3):397-403. PubMed ID: 20177825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.