BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 9758040)

  • 1. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers.
    Ishaug-Riley SL; Crane-Kruger GM; Yaszemski MJ; Mikos AG
    Biomaterials; 1998 Aug; 19(15):1405-12. PubMed ID: 9758040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds.
    Ishaug SL; Crane GM; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1997 Jul; 36(1):17-28. PubMed ID: 9212385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery.
    Ishaug-Riley SL; Crane GM; Gurlek A; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1997 Jul; 36(1):1-8. PubMed ID: 9212383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ forming lactic acid based orthopaedic biomaterials: influence of oligomer chemistry on osteoblast attachment and function.
    Burdick JA; Mason MN; Anseth KS
    J Biomater Sci Polym Ed; 2001; 12(11):1253-65. PubMed ID: 11853390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro.
    Wake MC; Gerecht PD; Lu L; Mikos AG
    Biomaterials; 1998 Jul; 19(14):1255-68. PubMed ID: 9720889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period.
    Holy CE; Shoichet MS; Davies JE
    J Biomed Mater Res; 2000 Sep; 51(3):376-82. PubMed ID: 10880079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds.
    Goldstein AS; Zhu G; Morris GE; Meszlenyi RK; Mikos AG
    Tissue Eng; 1999 Oct; 5(5):421-34. PubMed ID: 10586098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoblast function on synthetic biodegradable polymers.
    Ishaug SL; Yaszemski MJ; Bizios R; Mikos AG
    J Biomed Mater Res; 1994 Dec; 28(12):1445-53. PubMed ID: 7876284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds.
    Goldstein AS; Juarez TM; Helmke CD; Gustin MC; Mikos AG
    Biomaterials; 2001 Jun; 22(11):1279-88. PubMed ID: 11336300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor.
    Sikavitsas VI; Bancroft GN; Mikos AG
    J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds.
    Shea LD; Wang D; Franceschi RT; Mooney DJ
    Tissue Eng; 2000 Dec; 6(6):605-17. PubMed ID: 11103082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system.
    Botchwey EA; Pollack SR; Levine EM; Laurencin CT
    J Biomed Mater Res; 2001 May; 55(2):242-53. PubMed ID: 11255176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS
    Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.
    Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J
    J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds.
    Zong C; Xue D; Yuan W; Wang W; Shen D; Tong X; Shi D; Liu L; Zheng Q; Gao C; Wang J
    Eur Cell Mater; 2010 Sep; 20():109-20. PubMed ID: 21249628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function.
    Lu L; Yaszemski MJ; Mikos AG
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S82-91. PubMed ID: 11314800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.