BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9758172)

  • 1. Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses.
    Calabresi P; Centonze D; Gubellini P; Pisani A; Bernardi G
    Eur J Neurosci; 1998 Sep; 10(9):3020-3. PubMed ID: 9758172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation.
    Calabresi P; Centonze D; Gubellini P; Pisani A; Bernardi G
    Eur J Neurosci; 1998 Sep; 10(9):2887-95. PubMed ID: 9758158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP.
    Calabresi P; Centonze D; Gubellini P; Bernardi G
    Neuropharmacology; 1999 Feb; 38(2):323-6. PubMed ID: 10218876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus.
    Auerbach JM; Segal M
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):479-93. PubMed ID: 9019544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of muscarinic M3-like receptors and beta-adrenoceptors, but not M2-like muscarinic receptors or alpha-adrenoceptors, directly modulates corticostriatal neurotransmission in vitro.
    Niittykoski M; Ruotsalainen S; Haapalinna A; Larson J; Sirviö J
    Neuroscience; 1999 Apr; 90(1):95-105. PubMed ID: 10188937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-directional changes in synaptic plasticity induced at corticostriatal synapses in vitro.
    Spencer JP; Murphy KP
    Exp Brain Res; 2000 Dec; 135(4):497-503. PubMed ID: 11156313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for protein kinase A and protein kinase M zeta in muscarinic acetylcholine receptor-initiated persistent synaptic enhancement in rat hippocampus in vivo.
    Hayes J; Li S; Anwyl R; Rowan MJ
    Neuroscience; 2008 Jan; 151(2):604-12. PubMed ID: 18061357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term synaptic depression in the striatum: physiological and pharmacological characterization.
    Calabresi P; Maj R; Pisani A; Mercuri NB; Bernardi G
    J Neurosci; 1992 Nov; 12(11):4224-33. PubMed ID: 1359031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscarinic acetylcholine receptor-dependent induction of persistent synaptic enhancement in rat hippocampus in vivo.
    Li S; Cullen WK; Anwyl R; Rowan MJ
    Neuroscience; 2007 Jan; 144(2):754-61. PubMed ID: 17101232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of muscarinic long-term depression with electrically induced long-term potentiation and depression at CA3-CA1 synapses.
    McCutchen E; Scheiderer CL; Dobrunz LE; McMahon LL
    J Neurophysiol; 2006 Dec; 96(6):3114-21. PubMed ID: 17005622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate-triggered events inducing corticostriatal long-term depression.
    Calabresi P; Centonze D; Gubellini P; Marfia GA; Bernardi G
    J Neurosci; 1999 Jul; 19(14):6102-10. PubMed ID: 10407046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term plasticity of corticostriatal synapses is modulated by pathway-specific co-release of opioids through κ-opioid receptors.
    Hawes SL; Salinas AG; Lovinger DM; Blackwell KT
    J Physiol; 2017 Aug; 595(16):5637-5652. PubMed ID: 28449351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of metabotropic glutamate receptors in the striatum: electrophysiological evidence.
    Calabresi P; Pisani A; Mercuri NB; Bernardi G
    Eur J Neurosci; 1993 Oct; 5(10):1370-7. PubMed ID: 8275236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of potassium channel blockers on synaptic plasticity in the corticostriatal pathway.
    Wickens JR; Mckenzie D; Costanzo E; Arbuthnott GW
    Neuropharmacology; 1998; 37(4-5):523-33. PubMed ID: 9704993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.
    Centonze D; Grande C; Saulle E; Martin AB; Gubellini P; Pavón N; Pisani A; Bernardi G; Moratalla R; Calabresi P
    J Neurosci; 2003 Sep; 23(24):8506-12. PubMed ID: 13679419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability.
    Calabresi P; Saulle E; Centonze D; Pisani A; Marfia GA; Bernardi G
    Brain; 2002 Apr; 125(Pt 4):844-60. PubMed ID: 11912117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmentation of Endogenous Acetylcholine Uptake and Cholinergic Facilitation of Hippocampal Long-Term Potentiation by Acetylcholinesterase Inhibition.
    Masuoka T; Uwada J; Kudo M; Yoshiki H; Yamashita Y; Taniguchi T; Nishio M; Ishibashi T; Muramatsu I
    Neuroscience; 2019 Apr; 404():39-47. PubMed ID: 30708046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cdk5 inhibitor Roscovitine increases LTP induction in corticostriatal synapses.
    Miranda-Barrientos J; Nieto-Mendoza E; Hernández-Echeagaray E
    ASN Neuro; 2014 Mar; 6(2):. PubMed ID: 24555476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is pharmacological neuroprotection dependent on reduced glutamate release?
    Calabresi P; Picconi B; Saulle E; Centonze D; Hainsworth AH; Bernardi G
    Stroke; 2000 Mar; 31(3):766-72; discussion 773. PubMed ID: 10700517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrastriatal infusions of methoctramine improve memory in cognitively impaired aged rats.
    Lazaris A; Cassel S; Stemmelin J; Cassel JC; Kelche C
    Neurobiol Aging; 2003; 24(2):379-83. PubMed ID: 12498972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.