BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9758772)

  • 1. Effects of temperature, salinity, and medium composition on compatible solute accumulation by thermococcus spp.
    Lamosa P; Martins LO; Da Costa MS ; Santos H
    Appl Environ Microbiol; 1998 Oct; 64(10):3591-8. PubMed ID: 9758772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New compatible solutes related to Di-myo-inositol-phosphate in members of the order Thermotogales.
    Martins LO; Carreto LS; Da Costa MS; Santos H
    J Bacteriol; 1996 Oct; 178(19):5644-51. PubMed ID: 8824608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature.
    Martins LO; Santos H
    Appl Environ Microbiol; 1995 Sep; 61(9):3299-303. PubMed ID: 16535119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compatible solutes of the hyperthermophile Palaeococcus ferrophilus: osmoadaptation and thermoadaptation in the order thermococcales.
    Neves C; da Costa MS; Santos H
    Appl Environ Microbiol; 2005 Dec; 71(12):8091-8. PubMed ID: 16332790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic solutes in hyperthermophilic archaea.
    Martins LO; Huber R; Huber H; Stetter KO; Da Costa MS; Santos H
    Appl Environ Microbiol; 1997 Mar; 63(3):896-902. PubMed ID: 16535556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compatible Solutes in the Thermophilic Bacteria Rhodothermus marinus and "Thermus thermophilus".
    Nunes OC; Manaia CM; Da Costa MS; Santos H
    Appl Environ Microbiol; 1995 Jun; 61(6):2351-7. PubMed ID: 16535053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermococcus kodakarensis mutants deficient in di-myo-inositol phosphate use aspartate to cope with heat stress.
    Borges N; Matsumi R; Imanaka T; Atomi H; Santos H
    J Bacteriol; 2010 Jan; 192(1):191-7. PubMed ID: 19880594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis.
    Silva Z; Borges N; Martins LO; Wait R; da Costa MS; Santos H
    Extremophiles; 1999 May; 3(2):163-72. PubMed ID: 10357003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence of 1-glyceryl-1-myo-inosityl phosphate in hyperthermophiles.
    Lamosa P; Gonçalves LG; Rodrigues MV; Martins LO; Raven ND; Santos H
    Appl Environ Microbiol; 2006 Sep; 72(9):6169-73. PubMed ID: 16957243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile.
    Empadinhas N; Mendes V; Simões C; Santos MS; Mingote A; Lamosa P; Santos H; Costa MS
    Extremophiles; 2007 Sep; 11(5):667-73. PubMed ID: 17510735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of the di-myo-inositol-phosphate pathway in the piezo-hyperthermophilic archaeon Thermococcus barophilus.
    Cario A; Mizgier A; Thiel A; Jebbar M; Oger PM
    Biochimie; 2015 Nov; 118():286-93. PubMed ID: 26005095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and Role of Di-myo-Inositol-1,1'-Phosphate in Methanococcus igneus.
    Ciulla RA; Burggraf S; Stetter KO; Roberts MF
    Appl Environ Microbiol; 1994 Oct; 60(10):3660-4. PubMed ID: 16349412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mannosylglycerate and di-myo-inositol phosphate have interchangeable roles during adaptation of Pyrococcus furiosus to heat stress.
    Esteves AM; Chandrayan SK; McTernan PM; Borges N; Adams MW; Santos H
    Appl Environ Microbiol; 2014 Jul; 80(14):4226-33. PubMed ID: 24795373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes.
    Borges N; Ramos A; Raven ND; Sharp RJ; Santos H
    Extremophiles; 2002 Jun; 6(3):209-16. PubMed ID: 12072956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compatible solutes of organisms that live in hot saline environments.
    Santos H; da Costa MS
    Environ Microbiol; 2002 Sep; 4(9):501-9. PubMed ID: 12220406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of structure and antigenic capacities of Thermococcales cell envelopes and reclassification of "Caldococcus litoralis" Z-1301 as Thermococcus litoralis Z-1301.
    Kostyukova AS; Gongadze GM; Polosina YY; Bonch-Osmolovskaya EA; Miroshnichenko ML; Chernyh NA; Obraztsova MV; Svetlichny VA; Messner P; Sleytr UB; L'Haridon S; Jeanthon C; Prieur D
    Extremophiles; 1999 Nov; 3(4):239-45. PubMed ID: 10591013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of new enzyme stabilizers inspired by glycosides of hyperthermophilic microorganisms.
    Faria TQ; Mingote A; Siopa F; Ventura R; Maycock C; Santos H
    Carbohydr Res; 2008 Dec; 343(18):3025-33. PubMed ID: 18822412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima.
    Rinker KD; Kelly RM
    Biotechnol Bioeng; 2000 Sep; 69(5):537-47. PubMed ID: 10898863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes.
    Xavier KB; Peist R; Kossmann M; Boos W; Santos H
    J Bacteriol; 1999 Jun; 181(11):3358-67. PubMed ID: 10348846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and enzymological characterization of pyridoxal 5'-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473.
    Washio T; Kato S; Oikawa T
    Extremophiles; 2016 Sep; 20(5):711-21. PubMed ID: 27438592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.