These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9758795)

  • 1. Enhanced utilization of phosphonate and phosphite by Klebsiella aerogenes.
    Imazu K; Tanaka S; Kuroda A; Anbe Y; Kato J; Ohtake H
    Appl Environ Microbiol; 1998 Oct; 64(10):3754-8. PubMed ID: 9758795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes.
    Lee KS; Metcalf WW; Wanner BL
    J Bacteriol; 1992 Apr; 174(8):2501-10. PubMed ID: 1556070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi.
    Metcalf WW; Wanner BL
    J Bacteriol; 1991 Jan; 173(2):587-600. PubMed ID: 1846145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli.
    Wanner BL; Boline JA
    J Bacteriol; 1990 Mar; 172(3):1186-96. PubMed ID: 2155195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene cloning of the maoA gene and overproduction of a soluble monoamine oxidase from Klebsiella aerogenes.
    Sugino H; Ishibashi K; Sakaue M; Yamashita M; Murooka Y
    Appl Microbiol Biotechnol; 1991 Aug; 35(5):606-10. PubMed ID: 1367577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
    White AK; Metcalf WW
    J Bacteriol; 2004 Jul; 186(14):4730-9. PubMed ID: 15231805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning of the pullulanase gene and overproduction of pullulanase in Escherichia coli and Klebsiella aerogenes.
    Takizawa N; Murooka Y
    Appl Environ Microbiol; 1985 Feb; 49(2):294-8. PubMed ID: 3885852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for phosphite and phosphonate utilization by Prochlorococcus.
    Feingersch R; Philosof A; Mejuch T; Glaser F; Alalouf O; Shoham Y; Béjà O
    ISME J; 2012 Apr; 6(4):827-34. PubMed ID: 22011717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes.
    Kato J; Yamamoto T; Yamada K; Ohtake H
    Gene; 1993 Dec; 137(2):237-42. PubMed ID: 7916727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.
    Vera M; Pagliai F; Guiliani N; Jerez CA
    Appl Environ Microbiol; 2008 Mar; 74(6):1829-35. PubMed ID: 18203861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tn1000-mediated insertion mutagenesis of the histidine utilization (hut) gene cluster from Klebsiella aerogenes: genetic analysis of hut and unusual target specificity of Tn1000.
    Schwacha A; Cohen JA; Gehring KB; Bender RA
    J Bacteriol; 1990 Oct; 172(10):5991-8. PubMed ID: 2170334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans.
    Poehlein A; Daniel R; Schink B; Simeonova DD
    BMC Genomics; 2013 Nov; 14(1):753. PubMed ID: 24180241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of the Klebsiella aerogenes nac gene, which encodes a factor required for nitrogen regulation of the histidine utilization (hut) operons in Salmonella typhimurium.
    Best EA; Bender RA
    J Bacteriol; 1990 Dec; 172(12):7043-8. PubMed ID: 2254273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzene from bacterial cleavage of the carbon-phosphorus bond of phenylphosphonates.
    Cook AM; Daughton CG; Alexander M
    Biochem J; 1979 Nov; 184(2):453-5. PubMed ID: 393257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A restriction enzyme cleavage map of the histidine utilization (hut) genes of Klebsiella aerogenes and deletions lacking regions of hut DNA.
    Boylan SA; Eades LJ; Janssen KA; Lomax MI; Bender RA
    Mol Gen Genet; 1984; 193(1):92-8. PubMed ID: 6318054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minicircular ColE1-related DNA in strains of Klebsiella aerogenes selected for fast growth on xylitol.
    Neuberger MS; Hartley BS
    J Gen Microbiol; 1980 May; 118(1):171-7. PubMed ID: 6999122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301.
    Martínez A; Osburne MS; Sharma AK; DeLong EF; Chisholm SW
    Environ Microbiol; 2012 Jun; 14(6):1363-77. PubMed ID: 22004069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens.
    Mahren S; Schnell H; Braun V
    Arch Microbiol; 2005 Nov; 184(3):175-86. PubMed ID: 16193283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli.
    Metcalf WW; Wanner BL
    Gene; 1993 Jul; 129(1):27-32. PubMed ID: 8335257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.