These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9758806)

  • 1. Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria.
    Nelson KE; Thonney ML; Woolston TK; Zinder SH; Pell AN
    Appl Environ Microbiol; 1998 Oct; 64(10):3824-30. PubMed ID: 9758806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus.
    McSweeney CS; Palmer B; Bunch R; Krause DO
    Appl Environ Microbiol; 1999 Jul; 65(7):3075-83. PubMed ID: 10388706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China.
    Li ZP; Liu HL; Li GY; Bao K; Wang KY; Xu C; Yang YF; Yang FH; Wright AD
    BMC Microbiol; 2013 Jul; 13():151. PubMed ID: 23834656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis of Ruminococcus flavefaciens, the type species of the genus Ruminococcus, does not support the reclassification of Streptococcus hansenii and Peptostreptococcus productus as ruminococci.
    Willems A; Collins MD
    Int J Syst Bacteriol; 1995 Jul; 45(3):572-5. PubMed ID: 8590686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of tannin-degrading bacteria from the rumen of wild Hokkaido sika deer (Cervus nippon yezoensis).
    Sawabe Y; Yamano H; Koike S; Kobayashi Y
    Anim Sci J; 2024; 95(1):e13918. PubMed ID: 38286762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov.
    Paster BJ; Russell JB; Yang CM; Chow JM; Woese CR; Tanner R
    Int J Syst Bacteriol; 1993 Jan; 43(1):107-10. PubMed ID: 8427801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of PCR for the identification and characterisation of bacteriocin genes from bacterial strains isolated from rumen or caecal contents of cattle and sheep.
    Cookson AL; Noel SJ; Kelly WJ; Attwood GT
    FEMS Microbiol Ecol; 2004 May; 48(2):199-207. PubMed ID: 19712403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig.
    Pryde SE; Richardson AJ; Stewart CS; Flint HJ
    Appl Environ Microbiol; 1999 Dec; 65(12):5372-7. PubMed ID: 10583991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tannin-tolerant ruminal bacteria from East African ruminants.
    Odenyo AA; Osuji PO
    Can J Microbiol; 1998 Sep; 44(9):905-9. PubMed ID: 9851029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a xylanolytic bacterial strain C10 isolated from the rumen of a red deer (Cervus elaphus) closely related of the recently described species Actinomyces succiniciruminis, A. glycerinitolerans, and A. ruminicola.
    Šimůnek J; Killer J; Sechovcová H; Šimůnek J; Pechar R; Rada V; Švec P; Sedláček I
    Folia Microbiol (Praha); 2018 May; 63(3):391-399. PubMed ID: 29270873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Streptococcus bovis from the rumen of the dromedary camel and Rusa deer.
    Ghali MB; Scott PT; Al Jassim RA
    Lett Appl Microbiol; 2004; 39(4):341-6. PubMed ID: 15355536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer.
    Forster RJ; Teather RM; Gong J; Deng SJ
    Lett Appl Microbiol; 1996 Oct; 23(4):218-22. PubMed ID: 8987694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns.
    Sasaki E; Shimada T; Osawa R; Nishitani Y; Spring S; Lang E
    Syst Appl Microbiol; 2005 Jun; 28(4):358-65. PubMed ID: 15997709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solobacterium moorei Gen. Nov., Sp. Nov.
    Kageyama A; Benno Y
    Microbiol Immunol; 2000; 44(4):223-7. PubMed ID: 10832964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eubacterium pyruvativorans sp. nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate.
    Wallace RJ; McKain N; McEwan NR; Miyagawa E; Chaudhary LC; King TP; Walker ND; Apajalahti JHA; Newbold CJ
    Int J Syst Evol Microbiol; 2003 Jul; 53(Pt 4):965-970. PubMed ID: 12892112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny of the defined murine microbiota: altered Schaedler flora.
    Dewhirst FE; Chien CC; Paster BJ; Ericson RL; Orcutt RP; Schauer DB; Fox JG
    Appl Environ Microbiol; 1999 Aug; 65(8):3287-92. PubMed ID: 10427008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of Absiella argi gen. nov., sp. nov., and transfer of Eubacterium dolichum and Eubacterium tortuosum to the genus Absiella as Absiella dolichum comb. nov. and Absiella tortuosum comb. nov.
    Paek J; Shin Y; Kim JS; Kim H; Kook JK; Paek WK; Chang YH
    Anaerobe; 2017 Dec; 48():70-75. PubMed ID: 28754474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tannin-degrading species Streptococcus gallolyticus and Streptococcus caprinus are subjective synonyms.
    Sly LI; Cahill MM; Osawa R; Fujisawa T
    Int J Syst Bacteriol; 1997 Jul; 47(3):893-4. PubMed ID: 9226925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov.
    Wade WG; Downes J; Dymock D; Hiom SJ; Weightman AJ; Dewhirst FE; Paster BJ; Tzellas N; Coleman B
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():595-600. PubMed ID: 10319481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposal for the reclassification of obligately purine-fermenting bacteria Clostridium acidurici (Barker 1938) and Clostridium purinilyticum (Dürre et al. 1981) as Gottschalkia acidurici gen. nov. comb. nov. and Gottschalkiapurinilytica comb. nov. and of Eubacterium angustum (Beuscher and Andreesen 1985) as Andreesenia angusta gen. nov. comb. nov. in the family Gottschalkiaceae fam. nov.
    Poehlein A; Yutin N; Daniel R; Galperin MY
    Int J Syst Evol Microbiol; 2017 Aug; 67(8):2711-2719. PubMed ID: 28853681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.