These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 9758858)

  • 1. Protein rearrangements underlying slow inactivation of the Shaker K+ channel.
    Loots E; Isacoff EY
    J Gen Physiol; 1998 Oct; 112(4):377-89. PubMed ID: 9758858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular coupling of S4 to a K(+) channel's slow inactivation gate.
    Loots E; Isacoff EY
    J Gen Physiol; 2000 Nov; 116(5):623-36. PubMed ID: 11055991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence.
    Mannuzzu LM; Isacoff EY
    J Gen Physiol; 2000 Mar; 115(3):257-68. PubMed ID: 10694254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural implications of fluorescence quenching in the Shaker K+ channel.
    Cha A; Bezanilla F
    J Gen Physiol; 1998 Oct; 112(4):391-408. PubMed ID: 9758859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cooperative voltage sensor motion that gates a potassium channel.
    Pathak M; Kurtz L; Tombola F; Isacoff E
    J Gen Physiol; 2005 Jan; 125(1):57-69. PubMed ID: 15623895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating.
    Baker OS; Larsson HP; Mannuzzu LM; Isacoff EY
    Neuron; 1998 Jun; 20(6):1283-94. PubMed ID: 9655514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence.
    Cha A; Bezanilla F
    Neuron; 1997 Nov; 19(5):1127-40. PubMed ID: 9390525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel.
    Gandhi CS; Loots E; Isacoff EY
    Neuron; 2000 Sep; 27(3):585-95. PubMed ID: 11055440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation.
    Ledwell JL; Aldrich RW
    J Gen Physiol; 1999 Mar; 113(3):389-414. PubMed ID: 10051516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel.
    Glauner KS; Mannuzzu LM; Gandhi CS; Isacoff EY
    Nature; 1999 Dec; 402(6763):813-7. PubMed ID: 10617202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilizing the moving parts of voltage-gated ion channels.
    Horn R; Ding S; Gruber HJ
    J Gen Physiol; 2000 Sep; 116(3):461-76. PubMed ID: 10962021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel.
    Starace DM; Bezanilla F
    J Gen Physiol; 2001 May; 117(5):469-90. PubMed ID: 11331357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of deactivation by an amino terminal domain in human ether-à-go-go-related gene potassium channels.
    Wang J; Trudeau MC; Zappia AM; Robertson GA
    J Gen Physiol; 1998 Nov; 112(5):637-47. PubMed ID: 9806971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-insensitive gating after charge-neutralizing mutations in the S4 segment of Shaker channels.
    Bao H; Hakeem A; Henteleff M; Starkus JG; Rayner MD
    J Gen Physiol; 1999 Jan; 113(1):139-51. PubMed ID: 9874694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A direct demonstration of closed-state inactivation of K+ channels at low pH.
    Claydon TW; Vaid M; Rezazadeh S; Kwan DC; Kehl SJ; Fedida D
    J Gen Physiol; 2007 May; 129(5):437-55. PubMed ID: 17470663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of voltage-dependent gating and open-state stability in the S5 segment of Shaker potassium channels.
    Kanevsky M; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):215-42. PubMed ID: 10435999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cysteine substitutions on the topology of the S4 segment of the Shaker potassium channel: implications for molecular models of gating.
    Wang MH; Yusaf SP; Elliott DJ; Wray D; Sivaprasadarao A
    J Physiol; 1999 Dec; 521 Pt 2(Pt 2):315-26. PubMed ID: 10581304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and slow voltage sensor rearrangements during activation gating in Kv1.2 channels detected using tetramethylrhodamine fluorescence.
    Horne AJ; Peters CJ; Claydon TW; Fedida D
    J Gen Physiol; 2010 Jul; 136(1):83-99. PubMed ID: 20584892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of the S3-S4 linker in the Shaker potassium channel reveals two quenching groups near the outside of S4.
    Sørensen JB; Cha A; Latorre R; Rosenman E; Bezanilla F
    J Gen Physiol; 2000 Feb; 115(2):209-22. PubMed ID: 10653897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.