These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 9759979)

  • 1. Electrical and optical monitoring of alpha-latrotoxin action at Drosophila neuromuscular junctions.
    Umbach JA; Grasso A; Zurcher SD; Kornblum HI; Mastrogiacomo A; Gundersen CB
    Neuroscience; 1998 Dec; 87(4):913-24. PubMed ID: 9759979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins.
    Südhof TC
    Annu Rev Neurosci; 2001; 24():933-62. PubMed ID: 11520923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique.
    Pumplin DW; Reese TS
    J Physiol; 1977 Dec; 273(2):443-57. PubMed ID: 202700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. beta-Bungarotoxin antagonizes the effect of alpha-latrotoxin from black widow spider venom on the neuromuscular junction.
    Tzeng MC; Tian SS
    J Neurobiol; 1984 Mar; 15(2):157-60. PubMed ID: 6325594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective presynaptic insectotoxin (alpha-latroinsectotoxin) isolated from black widow spider venom.
    Magazanik LG; Fedorova IM; Kovalevskaya GI; Pashkov VN; Bulgakov OV; Grishin EV
    Neuroscience; 1992; 46(1):181-8. PubMed ID: 1594101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-latrocrustatoxin increases neurotransmitter release by activating a calcium influx pathway at crayfish neuromuscular junction.
    Elrick DB; Charlton MP
    J Neurophysiol; 1999 Dec; 82(6):3550-62. PubMed ID: 10601481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha latrotoxin of black widow spider venom: an interesting neurotoxin and a tool for investigating the process of neurotransmitter release.
    Scheer H; Madeddu L; Dozio N; Gatti G; Vicentini LM; Meldolesi J
    J Physiol (Paris); 1984; 79(4):216-21. PubMed ID: 6152290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of black widow spider venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1-43.
    Henkel AW; Betz WJ
    Neuropharmacology; 1995 Nov; 34(11):1397-406. PubMed ID: 8606789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and purification of an irreversible presynaptic neurotoxin from the venom of the spider Hololena curta.
    Bowers CW; Phillips HS; Lee P; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 1987 May; 84(10):3506-10. PubMed ID: 3033650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific localization of the alpha-latrotoxin receptor in the nerve terminal plasma membrane.
    Valtorta F; Madeddu L; Meldolesi J; Ceccarelli B
    J Cell Biol; 1984 Jul; 99(1 Pt 1):124-32. PubMed ID: 6330124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Black widow spider toxins: the present and the future.
    Grishin EV
    Toxicon; 1998 Nov; 36(11):1693-701. PubMed ID: 9792186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double mode of action of black widow spider venom on frog neuromuscular junction.
    Gorio A; Rubin LL; Mauro A
    J Neurocytol; 1978 Apr; 7(2):193-202. PubMed ID: 25951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine string protein is required for calcium secretion coupling of evoked neurotransmission in drosophila but not for vesicle recycling.
    Ranjan R; Bronk P; Zinsmaier KE
    J Neurosci; 1998 Feb; 18(3):956-64. PubMed ID: 9437017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression by elevated calcium of black widow spider venom activity at frog neuromuscular junctions.
    Smith JE; Clark AW; Kuster TA
    J Neurocytol; 1977 Oct; 6(5):519-39. PubMed ID: 925722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-latrotoxin stimulates a novel pathway of Ca2+-dependent synaptic exocytosis independent of the classical synaptic fusion machinery.
    Deák F; Liu X; Khvotchev M; Li G; Kavalali ET; Sugita S; Südhof TC
    J Neurosci; 2009 Jul; 29(27):8639-48. PubMed ID: 19587270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of alpha-latrotoxin action.
    Henkel AW; Sankaranarayanan S
    Cell Tissue Res; 1999 May; 296(2):229-33. PubMed ID: 10382267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of alpha-latrotoxin on mouse nerve endings and fibers.
    Mallart A; Haimann C
    Muscle Nerve; 1985 Feb; 8(2):151-7. PubMed ID: 2414651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [alpha-Latrotoxin as an instrument for studying neurosecretions].
    Himmel'reĭkh NH
    Ukr Biokhim Zh (1999); 2000; 72(4-5):26-34. PubMed ID: 11200452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junctions.
    Fritz LC; Tzen MC; Mauro A
    Nature; 1980 Jan; 283(5746):486-7. PubMed ID: 6243402
    [No Abstract]   [Full Text] [Related]  

  • 20. Monoclonal antibodies can uncouple the main alpha-latrotoxin effects: toxin-induced Ca2+ influx and stimulated neurotransmitter release.
    Pashkov V; Grico N; Tsurupa G; Storchak L; Shatursky O; Himmerlreich N; Grishin E
    Neuroscience; 1993 Oct; 56(3):695-701. PubMed ID: 7504796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.