These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 9760229)
1. Exploring a channel to the active site of copper/topaquinone-containing phenylethylamine oxidase by chemical modification and site-specific mutagenesis. Matsuzaki R; Tanizawa K Biochemistry; 1998 Oct; 37(40):13947-57. PubMed ID: 9760229 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Wilce MC; Dooley DM; Freeman HC; Guss JM; Matsunami H; McIntire WS; Ruggiero CE; Tanizawa K; Yamaguchi H Biochemistry; 1997 Dec; 36(51):16116-33. PubMed ID: 9405045 [TBL] [Abstract][Full Text] [Related]
3. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor. Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714 [TBL] [Abstract][Full Text] [Related]
4. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha. DuBois JL; Klinman JP Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513 [TBL] [Abstract][Full Text] [Related]
5. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase. Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584 [TBL] [Abstract][Full Text] [Related]
6. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504 [TBL] [Abstract][Full Text] [Related]
7. X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase. Kim M; Okajima T; Kishishita S; Yoshimura M; Kawamori A; Tanizawa K; Yamaguchi H Nat Struct Biol; 2002 Aug; 9(8):591-6. PubMed ID: 12134140 [TBL] [Abstract][Full Text] [Related]
8. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase. Hevel JM; Mills SA; Klinman JP Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756 [TBL] [Abstract][Full Text] [Related]
9. Trapping of a dopaquinone intermediate in the TPQ cofactor biogenesis in a copper-containing amine oxidase from Arthrobacter globiformis. Moore RH; Spies MA; Culpepper MB; Murakawa T; Hirota S; Okajima T; Tanizawa K; Mure M J Am Chem Soc; 2007 Sep; 129(37):11524-34. PubMed ID: 17715921 [TBL] [Abstract][Full Text] [Related]
10. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants. Murray JM; Saysell CG; Wilmot CM; Tambyrajah WS; Jaeger J; Knowles PF; Phillips SE; McPherson MJ Biochemistry; 1999 Jun; 38(26):8217-27. PubMed ID: 10387067 [TBL] [Abstract][Full Text] [Related]
11. Identification of two imidazole binding sites and key residues for substrate specificity in human primary amine oxidase AOC3. Elovaara H; Kidron H; Parkash V; Nymalm Y; Bligt E; Ollikka P; Smith DJ; Pihlavisto M; Salmi M; Jalkanen S; Salminen TA Biochemistry; 2011 Jun; 50(24):5507-20. PubMed ID: 21585208 [TBL] [Abstract][Full Text] [Related]
12. Relationship between conserved consensus site residues and the productive conformation for the TPQ cofactor in a copper-containing amine oxidase from yeast. Schwartz B; Green EL; Sanders-Loehr J; Klinman JP Biochemistry; 1998 Nov; 37(47):16591-600. PubMed ID: 9843426 [TBL] [Abstract][Full Text] [Related]
13. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Brazeau BJ; Johnson BJ; Wilmot CM Arch Biochem Biophys; 2004 Aug; 428(1):22-31. PubMed ID: 15234266 [TBL] [Abstract][Full Text] [Related]
14. The nature of O2 reactivity leading to topa quinone in the copper amine oxidase from Hansenula polymorpha and its relationship to catalytic turnover. DuBois JL; Klinman JP Biochemistry; 2005 Aug; 44(34):11381-8. PubMed ID: 16114875 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic studies of topa quinone biogenesis in phenylethylamine oxidase. Ruggiero CE; Smith JA; Tanizawa K; Dooley DM Biochemistry; 1997 Feb; 36(8):1953-9. PubMed ID: 9047291 [TBL] [Abstract][Full Text] [Related]
16. Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase. Taki M; Murakawa T; Nakamoto T; Uchida M; Hayashi H; Tanizawa K; Yamamoto Y; Okajima T Biochemistry; 2008 Jul; 47(29):7726-33. PubMed ID: 18627131 [TBL] [Abstract][Full Text] [Related]
17. Gold electrodes wired for coupling with the deeply buried active site of Arthrobacter globiformis amine oxidase. Hess CR; Juda GA; Dooley DM; Amii RN; Hill MG; Winkler JR; Gray HB J Am Chem Soc; 2003 Jun; 125(24):7156-7. PubMed ID: 12797771 [TBL] [Abstract][Full Text] [Related]
18. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction. Wilmot CM; Murray JM; Alton G; Parsons MR; Convery MA; Blakeley V; Corner AS; Palcic MM; Knowles PF; McPherson MJ; Phillips SE Biochemistry; 1997 Feb; 36(7):1608-20. PubMed ID: 9048544 [TBL] [Abstract][Full Text] [Related]
19. Investigation of spectroscopic intermediates during copper-binding and TPQ formation in wild-type and active-site mutants of a copper-containing amine oxidase from yeast. Dove JE; Schwartz B; Williams NK; Klinman JP Biochemistry; 2000 Apr; 39(13):3690-8. PubMed ID: 10736168 [TBL] [Abstract][Full Text] [Related]