These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 9760235)

  • 1. Mapping substrate-induced conformational changes in cAMP-dependent protein kinase by protein footprinting.
    Cheng X; Shaltiel S; Taylor SS
    Biochemistry; 1998 Oct; 37(40):14005-13. PubMed ID: 9760235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.
    Narayana N; Cox S; Shaltiel S; Taylor SS; Xuong N
    Biochemistry; 1997 Apr; 36(15):4438-48. PubMed ID: 9109651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MgATP-induced conformational change of the catalytic subunit of cAMP-dependent protein kinase.
    Yang S; Rogers KM; Johnson DA
    Biophys Chem; 2005 Feb; 113(2):193-9. PubMed ID: 15617827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High affinity binding of the heat-stable protein kinase inhibitor to the catalytic subunit of cAMP-dependent protein kinase is selectively abolished by mutation of Arg133.
    Wen W; Taylor SS
    J Biol Chem; 1994 Mar; 269(11):8423-30. PubMed ID: 8132568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure.
    Akamine P; Madhusudan ; Wu J; Xuong NH; Ten Eyck LF; Taylor SS
    J Mol Biol; 2003 Mar; 327(1):159-71. PubMed ID: 12614615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor.
    Ung MU; Lu B; McCammon JA
    Biopolymers; 2006 Apr; 81(6):428-39. PubMed ID: 16365849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations.
    Zheng J; Knighton DR; Xuong NH; Taylor SS; Sowadski JM; Ten Eyck LF
    Protein Sci; 1993 Oct; 2(10):1559-73. PubMed ID: 8251932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding-dependent disorder-order transition in PKI alpha: a fluorescence anisotropy study.
    Hauer JA; Taylor SS; Johnson DA
    Biochemistry; 1999 May; 38(21):6774-80. PubMed ID: 10346898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological inhibitors of the catalytic subunit of cAMP-dependent protein kinase: effect of MgATP on protein-protein interactions.
    Herberg FW; Taylor SS
    Biochemistry; 1993 Dec; 32(50):14015-22. PubMed ID: 8268180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: role in catalysis, P-site specificity, and interaction with inhibitors.
    Aimes RT; Hemmer W; Taylor SS
    Biochemistry; 2000 Jul; 39(28):8325-32. PubMed ID: 10889042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the E230Q mutant of cAMP-dependent protein kinase reveals an unexpected apoenzyme conformation and an extended N-terminal A helix.
    Wu J; Yang J; Kannan N; Madhusudan ; Xuong NH; Ten Eyck LF; Taylor SS
    Protein Sci; 2005 Nov; 14(11):2871-9. PubMed ID: 16253959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinase conformations: a computational study of the effect of ligand binding.
    Helms V; McCammon JA
    Protein Sci; 1997 Nov; 6(11):2336-43. PubMed ID: 9385635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of synthetic peptide inhibitor and substrate of cAMP-dependent protein kinase. A study by 2D H NMR and molecular dynamics.
    Padilla A; Hauer JA; Tsigelny I; Parello J; Taylor SS
    J Pept Res; 1997 Mar; 49(3):210-20. PubMed ID: 9151254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility.
    Narayana N; Cox S; Nguyen-huu X; Ten Eyck LF; Taylor SS
    Structure; 1997 Jul; 5(7):921-35. PubMed ID: 9261084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of the nucleotide and metal-phosphate binding sites in cAMP-dependent protein kinase.
    Herberg FW; Doyle ML; Cox S; Taylor SS
    Biochemistry; 1999 May; 38(19):6352-60. PubMed ID: 10320366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of signaling by PKA.
    Taylor SS; Kim C; Vigil D; Haste NM; Yang J; Wu J; Anand GS
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):25-37. PubMed ID: 16214430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA.
    Kim C; Xuong NH; Taylor SS
    Science; 2005 Feb; 307(5710):690-6. PubMed ID: 15692043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an internal entropy contribution to phosphoryl transfer: a study of domain closure, backbone flexibility, and the catalytic cycle of cAMP-dependent protein kinase.
    Li F; Gangal M; Juliano C; Gorfain E; Taylor SS; Johnson DA
    J Mol Biol; 2002 Jan; 315(3):459-69. PubMed ID: 11786025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting.
    Yu S; Mei FC; Lee JC; Cheng X
    Biochemistry; 2004 Feb; 43(7):1908-20. PubMed ID: 14967031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains.
    Szpikowska BK; Swiderek KM; Sherman MA; Mas MT
    Protein Sci; 1998 Jul; 7(7):1524-30. PubMed ID: 9684884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.