These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 9760266)
1. Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes. Salom D; Pérez-Payá E; Pascal J; Abad C Biochemistry; 1998 Oct; 37(40):14279-91. PubMed ID: 9760266 [TBL] [Abstract][Full Text] [Related]
2. Gramicidin D conformation, dynamics and membrane ion transport. Burkhart BM; Gassman RM; Langs DA; Pangborn WA; Duax WL; Pletnev V Biopolymers; 1999; 51(2):129-44. PubMed ID: 10397797 [TBL] [Abstract][Full Text] [Related]
3. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding. Maruyama T; Takeuchi H Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091 [TBL] [Abstract][Full Text] [Related]
4. The effect of temperature and lipid on the conformational transition of gramicidin A in lipid vesicles. Lin TH; Huang HB; Wei HA; Shiao SH; Chen YC Biopolymers; 2005 Jul; 78(4):179-86. PubMed ID: 15765548 [TBL] [Abstract][Full Text] [Related]
5. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
6. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472 [TBL] [Abstract][Full Text] [Related]
7. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase. Clark EH; East JM; Lee AG Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643 [TBL] [Abstract][Full Text] [Related]
8. Neighboring aliphatic/aromatic side chain interactions between residues 9 and 10 in gramicidin channels. Koeppe RE; Hatchett J; Jude AR; Providence LL; Andersen OS; Greathouse DV Biochemistry; 2000 Mar; 39(9):2235-42. PubMed ID: 10694389 [TBL] [Abstract][Full Text] [Related]
9. HPLC demonstration that an all Trp-->Phe replacement in gramicidin A results in a conformational rearrangement from beta-helical monomer to double-stranded dimer in model membranes. Salom D; Bañó MC; Braco L; Abad C Biochem Biophys Res Commun; 1995 Apr; 209(2):466-73. PubMed ID: 7537493 [TBL] [Abstract][Full Text] [Related]
10. Gramicidin channels in phospholipid bilayers with unsaturated acyl chains. Girshman J; Greathouse DV; Koeppe RE; Andersen OS Biophys J; 1997 Sep; 73(3):1310-9. PubMed ID: 9284299 [TBL] [Abstract][Full Text] [Related]
11. A semi-empirical approach for the simulation of circular dichroism spectra of gramicidin A in a model membrane. Bañó MC; Braco L; Abad C Biophys J; 1992 Jul; 63(1):70-7. PubMed ID: 1384735 [TBL] [Abstract][Full Text] [Related]
12. The membrane interface dictates different anchor roles for "inner pair" and "outer pair" tryptophan indole rings in gramicidin A channels. Gu H; Lum K; Kim JH; Greathouse DV; Andersen OS; Koeppe RE Biochemistry; 2011 Jun; 50(22):4855-66. PubMed ID: 21539360 [TBL] [Abstract][Full Text] [Related]
13. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles. Jordan JB; Easton PL; Hinton JF Biophys J; 2005 Jan; 88(1):224-34. PubMed ID: 15501932 [TBL] [Abstract][Full Text] [Related]
14. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Powl AM; East JM; Lee AG Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699 [TBL] [Abstract][Full Text] [Related]
15. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels. Chaudhuri A; Haldar S; Sun H; Koeppe RE; Chattopadhyay A Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):419-28. PubMed ID: 24148157 [TBL] [Abstract][Full Text] [Related]
16. Ion channels formed by chemical analogs of gramicidin A. Bamberg E; Apell HJ; Alpes H; Gross E; Morell JL; Harbaugh JF; Janko K; Läuger P Fed Proc; 1978 Oct; 37(12):2633-8. PubMed ID: 81149 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulations of Trp side-chain conformational flexibility in the gramicidin A channel. Bingham NC; Smith NE; Cross TA; Busath DD Biopolymers; 2003; 71(5):593-600. PubMed ID: 14635099 [TBL] [Abstract][Full Text] [Related]
18. The conformational preference of gramicidin channels is a function of lipid bilayer thickness. Mobashery N; Nielsen C; Andersen OS FEBS Lett; 1997 Jul; 412(1):15-20. PubMed ID: 9257681 [TBL] [Abstract][Full Text] [Related]
19. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Becker MD; Greathouse DV; Koeppe RE; Andersen OS Biochemistry; 1991 Sep; 30(36):8830-9. PubMed ID: 1716152 [TBL] [Abstract][Full Text] [Related]
20. Conformational transitions of gramicidin A in phospholipid model membranes. A high-performance liquid chromatography assessment. Bañó MC; Braco L; Abad C Biochemistry; 1991 Jan; 30(4):886-94. PubMed ID: 1703439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]