These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9760900)

  • 1. Influence of barrier occlusiveness on guided bone augmentation. An experimental study in the rat.
    Lundgren A; Lundgren D; Taylor A
    Clin Oral Implants Res; 1998 Aug; 9(4):251-60. PubMed ID: 9760900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmentation of calvarial tissue using non-permeable silicone domes and bovine bone mineral. An experimental study in the rat.
    Slotte C; Lundgren D
    Clin Oral Implants Res; 1999 Dec; 10(6):468-76. PubMed ID: 10740456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of occlusiveness of a titanium cap on bone generation beyond the skeletal envelope in the rabbit calvarium.
    Yamada Y; Nanba K; Ito K
    Clin Oral Implants Res; 2003 Aug; 14(4):455-63. PubMed ID: 12869008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of cortical perforations and of space filling with peripheral blood on the kinetics of guided bone generation. A comparative histometric study in the rat.
    Rompen EH; Biewer R; Vanheusden A; Zahedi S; Nusgens B
    Clin Oral Implants Res; 1999 Apr; 10(2):85-94. PubMed ID: 10219127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of cortical perforations of contiguous donor bone in a guided bone augmentation procedure: an experimental study in the rabbit skull.
    Slotte C; Lundgren D
    Clin Implant Dent Relat Res; 2002; 4(1):1-10. PubMed ID: 11938632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmentation of intramembraneous bone beyond the skeletal envelope using an occlusive titanium barrier. An experimental study in the rabbit.
    Lundgren D; Lundgren AK; Sennerby L; Nyman S
    Clin Oral Implants Res; 1995 Jun; 6(2):67-72. PubMed ID: 7578783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcomputed tomographic and histomorphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study in rat calvarial defects.
    Rakhmatia YD; Ayukawa Y; Furuhashi A; Koyano K
    Int J Oral Maxillofac Implants; 2014; 29(4):826-35. PubMed ID: 25032762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided jaw-bone regeneration using an experimental rabbit model.
    Lundgren AK; Sennerby L; Lundgren D
    Int J Oral Maxillofac Surg; 1998 Apr; 27(2):135-40. PubMed ID: 9565273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface roughness of barrier walls on guided bone augmentation: experimental study in rabbits.
    Lundgren AK; Lundgren D; Wennerberg A; Hämmerle CH; Nyman S
    Clin Implant Dent Relat Res; 1999; 1(1):41-8. PubMed ID: 11359310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Healing patterns in calvarial bone defects following guided bone regeneration in rats. A micro-CT scan analysis.
    Verna C; Dalstra M; Wikesjö UM; Trombelli L;
    J Clin Periodontol; 2002 Sep; 29(9):865-70. PubMed ID: 12423301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of guided tissue regeneration on the healing of osseous defects in rat calvaria.
    Bohning BP; Davenport WD; Jeansonne BG
    J Endod; 1999 Feb; 25(2):81-4. PubMed ID: 10204461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat.
    Mardas N; Kostopoulos L; Karring T
    J Craniofac Surg; 2002 May; 13(3):453-62; discussion 462-4. PubMed ID: 12040218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Placement of autogeneic bone chips or bovine bone mineral in guided bone augmentation: a rabbit skull study.
    Slotte C; Lundgren D; Burgos PM
    Int J Oral Maxillofac Implants; 2003; 18(6):795-806. PubMed ID: 14696654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of mechanical barrier permeability on guided bone augmentation in the rat calvarium.
    Yamamoto T; Hasuike A; Koshi R; Ozawa Y; Ozaki M; Kubota T; Sato S
    J Oral Sci; 2018 Sep; 60(3):453-459. PubMed ID: 30101821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmentation of skull bone using a bioresorbable barrier supported by autologous bone grafts. An intra-individual study in the rabbit.
    Lundgren AK; Lundgren D; Sennerby L; Taylor A; Gottlow J; Nyman S
    Clin Oral Implants Res; 1997 Apr; 8(2):90-5. PubMed ID: 9758959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of bioabsorbable and non-resorbable barrier membranes on bone augmentation in rabbit calvaria.
    Ito K; Nanba K; Murai S
    J Periodontol; 1998 Nov; 69(11):1229-37. PubMed ID: 9848532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Guided Bone Regeneration Between Surface-Modified and Pristine Titanium Membranes in a Rat Calvarial Model.
    Nguyen TD; Moon SH; Oh TJ; Seok JJ; Lee MH; Bae TS
    Int J Oral Maxillofac Implants; 2016; 31(3):581-90. PubMed ID: 27183067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guided bone augmentation using a ceramic space-maintaining device.
    Anderud J; Jimbo R; Abrahamsson P; Isaksson SG; Adolfsson E; Malmström J; Kozai Y; Hallmer F; Wennerberg A
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2014 Nov; 118(5):532-8. PubMed ID: 25224903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incomplete bone regeneration of rabbit calvarial defects using different membranes.
    Aaboe M; Pinholt EM; Schou S; Hjørting-Hansen E
    Clin Oral Implants Res; 1998 Oct; 9(5):313-20. PubMed ID: 9835810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth factors and bone regeneration. Implications of barrier membranes.
    Zellin G
    Swed Dent J Suppl; 1998; 129():7-65. PubMed ID: 9672999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.