These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 9760991)
21. Structure and function of ribonuclease A binding subsites. Parés X; Nogués MV; de Llorens R; Cuchillo CM Essays Biochem; 1991; 26():89-103. PubMed ID: 1778187 [TBL] [Abstract][Full Text] [Related]
22. The success of the RNase scaffold in the advance of biosciences and in evolution. Pizzo E; D'Alessio G Gene; 2007 Dec; 406(1-2):8-12. PubMed ID: 17616268 [TBL] [Abstract][Full Text] [Related]
23. The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Cho S; Beintema JJ; Zhang J Genomics; 2005 Feb; 85(2):208-20. PubMed ID: 15676279 [TBL] [Abstract][Full Text] [Related]
24. The contribution of noncatalytic phosphate-binding subsites to the mechanism of bovine pancreatic ribonuclease A. Nogués MV; Moussaoui M; Boix E; Vilanova M; Ribó M; Cuchillo CM Cell Mol Life Sci; 1998 Aug; 54(8):766-74. PubMed ID: 9760985 [TBL] [Abstract][Full Text] [Related]
25. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481 [TBL] [Abstract][Full Text] [Related]
27. Multiple bursts of pancreatic ribonuclease gene duplication in insect-eating bats. Xu H; Liu Y; Meng F; He B; Han N; Li G; Rossiter SJ; Zhang S Gene; 2013 Sep; 526(2):112-7. PubMed ID: 23644026 [TBL] [Abstract][Full Text] [Related]
28. The primary structure of langur (Presbytis entellus) pancreatic ribonuclease: adaptive features in digestive enzymes in mammals. Beintema JJ Mol Biol Evol; 1990 Sep; 7(5):470-7. PubMed ID: 2263196 [TBL] [Abstract][Full Text] [Related]
29. Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. Rosenberg HF; Dyer KD J Biol Chem; 1995 Sep; 270(37):21539-44. PubMed ID: 7665566 [TBL] [Abstract][Full Text] [Related]
30. Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. Barker RL; Loegering DA; Ten RM; Hamann KJ; Pease LR; Gleich GJ J Immunol; 1989 Aug; 143(3):952-5. PubMed ID: 2745977 [TBL] [Abstract][Full Text] [Related]
31. Evolution of nucleic acids coding for ribonucleases: the mRNA sequence of mouse pancreatic ribonuclease. Schüller C; Nijssen HM; Kok R; Beintema JJ Mol Biol Evol; 1990 Jan; 7(1):29-44. PubMed ID: 2299980 [TBL] [Abstract][Full Text] [Related]
32. Seminal-type ribonuclease genes in ruminants, sequence conservation without protein expression? Kleineidam RG; Jekel PA; Beintema JJ; Situmorang P Gene; 1999 Apr; 231(1-2):147-53. PubMed ID: 10231579 [TBL] [Abstract][Full Text] [Related]
33. Nucleotide sequence encoding human pancreatic ribonuclease. Seno M; Futami J; Kosaka M; Seno S; Yamada H Biochim Biophys Acta; 1994 Aug; 1218(3):466-8. PubMed ID: 8049276 [TBL] [Abstract][Full Text] [Related]
34. The DNA sequences of the human and hamster secretory ribonucleases determined with the polymerase chain reaction (PCR). Haugg M; Schein CH Nucleic Acids Res; 1992 Feb; 20(3):612. PubMed ID: 1741299 [No Abstract] [Full Text] [Related]
35. The differential pattern of tissue-specific expression of ruminant pancreatic type ribonucleases may help to understand the evolutionary history of their genes. Sasso MP; Lombardi M; Confalone E; Carsana A; Palmieri M; Furia A Gene; 1999 Feb; 227(2):205-12. PubMed ID: 10023061 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. Kobe B; Deisenhofer J J Mol Biol; 1996 Dec; 264(5):1028-43. PubMed ID: 9000628 [TBL] [Abstract][Full Text] [Related]
38. An ancient evolutionary connection between Ribonuclease A and EndoU families. Mushegian A; Sorokina I; Eroshkin A; Dlakić M RNA; 2020 Jul; 26(7):803-813. PubMed ID: 32284351 [TBL] [Abstract][Full Text] [Related]
39. Origin of the duplicated ribonuclease gene in guinea-pig: comparison of the amino acid sequences with those of two close relatives: capybara and cuis ribonuclease. Beintema JJ; Neuteboom B J Mol Evol; 1983; 19(2):145-52. PubMed ID: 6571219 [TBL] [Abstract][Full Text] [Related]
40. Introducing the new bacterial branch of the RNase A superfamily. Cuthbert BJ; Burley KH; Goulding CW RNA Biol; 2018 Jan; 15(1):9-12. PubMed ID: 29099294 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]