BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9761311)

  • 1. Inhibitory function in two models of chronic epileptogenesis.
    Prince DA; Jacobs K
    Epilepsy Res; 1998 Sep; 32(1-2):83-92. PubMed ID: 9761311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic focal neocortical epileptogenesis: does disinhibition play a role?
    Prince DA; Jacobs KM; Salin PA; Hoffman S; Parada I
    Can J Physiol Pharmacol; 1997 May; 75(5):500-7. PubMed ID: 9250384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute injury to superficial cortex leads to a decrease in synaptic inhibition and increase in excitation in neocortical layer V pyramidal cells.
    Yang L; Benardo LS; Valsamis H; Ling DS
    J Neurophysiol; 2007 Jan; 97(1):178-87. PubMed ID: 16987927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural alterations in fast-spiking GABAergic interneurons in a model of posttraumatic neocortical epileptogenesis.
    Gu F; Parada I; Shen F; Li J; Bacci A; Graber K; Taghavi RM; Scalise K; Schwartzkroin P; Wenzel J; Prince DA
    Neurobiol Dis; 2017 Dec; 108():100-114. PubMed ID: 28823934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model.
    Bush PC; Prince DA; Miller KD
    J Neurophysiol; 1999 Oct; 82(4):1748-58. PubMed ID: 10515964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex.
    Salin PA; Prince DA
    J Neurophysiol; 1996 Apr; 75(4):1589-600. PubMed ID: 8727398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex.
    Li H; Prince DA
    J Neurophysiol; 2002 Jul; 88(1):2-12. PubMed ID: 12091528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epileptogenesis in chronically injured cortex: in vitro studies.
    Prince DA; Tseng GF
    J Neurophysiol; 1993 Apr; 69(4):1276-91. PubMed ID: 8492163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitatory and inhibitory postsynaptic currents in a rat model of epileptogenic microgyria.
    Jacobs KM; Prince DA
    J Neurophysiol; 2005 Feb; 93(2):687-96. PubMed ID: 15385597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous inhibitory circuits in cortical tubers of human tuberous sclerosis complex associated with refractory epilepsy: aberrant expression of parvalbumin and calbindin-D28k in dysplastic cortex.
    Valencia I; Legido A; Yelin K; Khurana D; Kothare SV; Katsetos CD
    J Child Neurol; 2006 Dec; 21(12):1058-63. PubMed ID: 17156698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex.
    Salin PA; Prince DA
    J Neurophysiol; 1996 Apr; 75(4):1573-88. PubMed ID: 8727397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traumatic brain injury induces rapid enhancement of cortical excitability in juvenile rats.
    Nichols J; Perez R; Wu C; Adelson PD; Anderson T
    CNS Neurosci Ther; 2015 Feb; 21(2):193-203. PubMed ID: 25475223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interneurons in area CA1 stratum radiatum and stratum oriens remain functionally connected to excitatory synaptic input in chronically epileptic animals.
    Rempe DA; Bertram EH; Williamson JM; Lothman EW
    J Neurophysiol; 1997 Sep; 78(3):1504-15. PubMed ID: 9310439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial TrkB receptor activation suppresses cortical epileptogenesis through actions on parvalbumin interneurons.
    Gu F; Parada I; Yang T; Longo FM; Prince DA
    Neurobiol Dis; 2018 May; 113():45-58. PubMed ID: 29408225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of neuronal migration disorders in neocortical structures: loss or preservation of inhibitory interneurons?
    Schwarz P; Stichel CC; Luhmann HJ
    Epilepsia; 2000 Jul; 41(7):781-7. PubMed ID: 10897147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex.
    Salin P; Tseng GF; Hoffman S; Parada I; Prince DA
    J Neurosci; 1995 Dec; 15(12):8234-45. PubMed ID: 8613757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex.
    Kawaguchi Y; Kubota Y
    J Neurophysiol; 1993 Jul; 70(1):387-96. PubMed ID: 8395585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced excitatory drive in interneurons in an animal model of cortical dysplasia.
    Xiang H; Chen HX; Yu XX; King MA; Roper SN
    J Neurophysiol; 2006 Aug; 96(2):569-78. PubMed ID: 16641376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic neocortical epileptogenesis in vitro.
    Hoffman SN; Salin PA; Prince DA
    J Neurophysiol; 1994 May; 71(5):1762-73. PubMed ID: 8064347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of spontaneous inhibitory synaptic activity in experimental heterotopic gray matter.
    Chen HX; Roper SN
    J Neurophysiol; 2003 Jan; 89(1):150-8. PubMed ID: 12522167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.