BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9761483)

  • 1. Electrostatic coupling to pH-titrating sites as a source of cooperativity in protein-ligand binding.
    Spassov V; Bashford D
    Protein Sci; 1998 Sep; 7(9):2012-25. PubMed ID: 9761483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ binding in proteins of the calmodulin superfamily: cooperativity, electrostatic contributions and molecular mechanisms.
    Forsén S; Linse S; Drakenberg T; Kördel J; Akke M; Sellers P; Johansson C; Thulin E; Andersson I; Brodin P
    Ciba Found Symp; 1991; 161():222-36. PubMed ID: 1667634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant.
    Wimberly B; Thulin E; Chazin WJ
    Protein Sci; 1995 Jun; 4(6):1045-55. PubMed ID: 7549869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative measurements of the cooperativity in an EF-hand protein with sequential calcium binding.
    Linse S; Chazin WJ
    Protein Sci; 1995 Jun; 4(6):1038-44. PubMed ID: 7549868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A calbindin D9k mutant with reduced calcium affinity and enhanced cooperativity. Metal ion binding, stability, and structural studies.
    Linse S; Bylsma NR; Drakenberg T; Sellers P; Forsén S; Thulin E; Svensson LA; Zajtzeva I; Zajtsev V; Marek J
    Biochemistry; 1994 Oct; 33(41):12478-86. PubMed ID: 7918470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of ligand binding and dimerization of helix-loop-helix peptides: spectroscopic and sedimentation analyses of calbindin D9k EF-hands.
    Julenius K; Robblee J; Thulin E; Finn BE; Fairman R; Linse S
    Proteins; 2002 May; 47(3):323-33. PubMed ID: 11948786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calbindin D(9k): a protein optimized for calcium binding at neutral pH.
    Kesvatera T; Jönsson B; Telling A; Tõugu V; Vija H; Thulin E; Linse S
    Biochemistry; 2001 Dec; 40(50):15334-40. PubMed ID: 11735416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast and simple method to calculate protonation states in proteins.
    Sandberg L; Edholm O
    Proteins; 1999 Sep; 36(4):474-83. PubMed ID: 10450090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperativity: over the Hill.
    Forsén S; Linse S
    Trends Biochem Sci; 1995 Dec; 20(12):495-7. PubMed ID: 8571449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes.
    Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Med Chem; 2003 Oct; 46(21):4487-500. PubMed ID: 14521411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin.
    Faas GC; Schwaller B; Vergara JL; Mody I
    PLoS Biol; 2007 Nov; 5(11):e311. PubMed ID: 18044987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-binding properties of calbindin D9k: a Monte Carlo simulation study.
    Svensson B; Jönsson B; Woodward CE; Linse S
    Biochemistry; 1991 May; 30(21):5209-17. PubMed ID: 2036387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of Ca2+ to calbindin D9k: structural stability and function at high salt concentration.
    Kesvatera T; Jönsson B; Thulin E; Linse S
    Biochemistry; 1994 Nov; 33(47):14170-6. PubMed ID: 7947829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional 1H nuclear magnetic resonance studies of the half-saturated (Ca2+)1 state of calbindin D9k. Further implications for the molecular basis of cooperative Ca2+ binding.
    Carlström G; Chazin WJ
    J Mol Biol; 1993 May; 231(2):415-30. PubMed ID: 8389885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of protonation, reduction, and conformational change in azurin from Pseudomonas aeruginosa investigated with free energy measures of cooperativity.
    Ullmann RT; Ullmann GM
    J Phys Chem B; 2011 Sep; 115(34):10346-59. PubMed ID: 21774518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mesoscopic model for protein-protein interactions in solution.
    Lund M; Jönsson B
    Biophys J; 2003 Nov; 85(5):2940-7. PubMed ID: 14581196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic contributions to the binding of Ca2+ in calbindin D9k.
    Linse S; Johansson C; Brodin P; Grundström T; Drakenberg T; Forsén S
    Biochemistry; 1991 Jan; 30(1):154-62. PubMed ID: 1988017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic contributions to the kinetics and thermodynamics of protein assembly.
    Dell'Orco D; Xue WF; Thulin E; Linse S
    Biophys J; 2005 Mar; 88(3):1991-2002. PubMed ID: 15596501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta.
    Potts BC; Carlström G; Okazaki K; Hidaka H; Chazin WJ
    Protein Sci; 1996 Nov; 5(11):2162-74. PubMed ID: 8931135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular recognition study on the binding of calcium to calbindin D9k based on 3D reference interaction site model theory.
    Kiyota Y; Takeda-Shitaka M
    J Phys Chem B; 2014 Oct; 118(39):11496-503. PubMed ID: 25251030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.