BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 9761644)

  • 1. Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1998 Oct; 206(1):195-204. PubMed ID: 9761644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catastrophic drop breakup in electric field.
    Raut JS; Akella S; Singh A; Naik VM
    Langmuir; 2009 May; 25(9):4829-34. PubMed ID: 19334721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakup of a Multiple Emulsion Drop in a Uniform Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1999 May; 213(1):92-100. PubMed ID: 10191011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow.
    Bazhlekov IB; Anderson PD; Meijer HE
    J Colloid Interface Sci; 2006 Jun; 298(1):369-94. PubMed ID: 16412455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges.
    Liao YC; Subramani HJ; Franses EI; Basaran OA
    Langmuir; 2004 Nov; 20(23):9926-30. PubMed ID: 15518476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical study of the effect of insoluble surfactants on the stability of a viscous drop translating in a Hele-Shaw cell.
    Gupta NR; Nadim A; Haj-Hariri H; Borhan A
    J Colloid Interface Sci; 2002 Aug; 252(1):236-48. PubMed ID: 16290784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of Drop Formation in an Electric Field.
    Notz PK; Basaran OA
    J Colloid Interface Sci; 1999 May; 213(1):218-237. PubMed ID: 10191025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: effect of surfactant solubility.
    Johnson RA; Borhan A
    J Colloid Interface Sci; 2003 May; 261(2):529-41. PubMed ID: 16256565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Adsorption-Desorption-Controlled Surfactant on a Deforming Droplet.
    Eggleton CD; Stebe KJ
    J Colloid Interface Sci; 1998 Dec; 208(1):68-80. PubMed ID: 9820750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Insoluble Surfactants on Drainage and Rupture of a Film between Drops Interacting under a Constant Force.
    Chesters AK; Bazhlekov IB
    J Colloid Interface Sci; 2000 Oct; 230(2):229-243. PubMed ID: 11017729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation and motion of a charged conducting drop in a dielectric liquid under a nonuniform electric field.
    Kim JG; Im DJ; Jung YM; Kang IS
    J Colloid Interface Sci; 2007 Jun; 310(2):599-606. PubMed ID: 17343870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of the Shape of a Viscous Drop under Buoyancy-Driven Translation in a Hele-Shaw Cell.
    Gupta NR; Nadim A; Haj-Hariri H; Borhan A
    J Colloid Interface Sci; 2000 Feb; 222(1):107-116. PubMed ID: 10655132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal stability dictates drop breakup under electric fields.
    Lanauze JA; Sengupta R; Bleier BJ; Yezer BA; Khair AS; Walker LM
    Soft Matter; 2018 Nov; 14(46):9351-9360. PubMed ID: 30457153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakup of a leaky dielectric drop in a uniform electric field.
    Dong Q; Sau A
    Phys Rev E; 2019 Apr; 99(4-1):043106. PubMed ID: 31108624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Growth and Breakup of Viscous Pendant Drops into Air.
    Zhang X
    J Colloid Interface Sci; 1999 Apr; 212(1):107-122. PubMed ID: 10072280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Surfactant on the Motion of a Buoyancy-Driven Drop at Intermediate Reynolds Numbers: A Numerical Approach.
    Li Xj XJ; Mao ZS
    J Colloid Interface Sci; 2001 Aug; 240(1):307-322. PubMed ID: 11446814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Insoluble Surfactants on the Pressure-Driven Motion of a Drop in a Tube in the Limit of High Surface Coverage.
    Johnson RA; Borhan A
    J Colloid Interface Sci; 1999 Oct; 218(1):184-200. PubMed ID: 10489292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Interfacial Deformation of a Magnetic Liquid Drop under the Simultaneous Action of Electric and Magnetic Fields.
    Tyatyushkin AN; Velarde MG
    J Colloid Interface Sci; 2001 Mar; 235(1):46-58. PubMed ID: 11237441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFD evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops.
    Velankar S; Zhou H; Jeon HK; Macosko CW
    J Colloid Interface Sci; 2004 Apr; 272(1):172-85. PubMed ID: 14985035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.