BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 9761695)

  • 1. Intravascular and intracellular hepatic relaxivities of superparamagnetic particles: an isolated and perfused organ pharmacokinetics study.
    Colet JM; Piérart C; Seghi F; Gabric I; Muller RN
    J Magn Reson; 1998 Oct; 134(2):199-205. PubMed ID: 9761695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitation of MR relaxation effects of iron oxide particles in liver and spleen.
    Majumdar S; Zoghbi S; Pope CF; Gore JC
    Radiology; 1988 Dec; 169(3):653-8. PubMed ID: 3186986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a T2rho transverse relaxation model using LASER and CPMG acquisitions.
    Nikolova S; Bowen CV; Bartha R
    J Magn Reson; 2006 Jul; 181(1):35-44. PubMed ID: 16616533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of transverse relaxation time T2 of biologic tissues on the interpulse delay time in Carr-Purcell-Meiboom-Gill (CPMG) measurements.
    Shioya S; Kurita D; Haida M; Fukuzaki M; Tanigaki T; Kutsuzawa T; Ohta Y
    Tokai J Exp Clin Med; 1997 May; 22(2):27-31. PubMed ID: 9608628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for attachment of magnetic starch microspheres to Kupffer cells receptors in excised and perfused rat liver.
    Colet JM; Van Haverbeke Y; Muller RN
    Invest Radiol; 1994 Jun; 29 Suppl 2():S223-5. PubMed ID: 7928238
    [No Abstract]   [Full Text] [Related]  

  • 7. NMR properties of human median nerve at 3 T: proton density, T1, T2, and magnetization transfer.
    Gambarota G; Mekle R; Mlynárik V; Krueger G
    J Magn Reson Imaging; 2009 Apr; 29(4):982-6. PubMed ID: 19306447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of 1H-NMR relaxation time distributions in L1 to L6 rat lumbar vertebrae.
    Fantazzini P; Garavaglia C; Palombarini M; Brown RJ; Giavaresi G; Giardino R
    Magn Reson Imaging; 2004 Jun; 22(5):689-95. PubMed ID: 15172063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R2 relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients.
    Alexopoulou E; Stripeli F; Baras P; Seimenis I; Kattamis A; Ladis V; Efstathopoulos E; Brountzos EN; Kelekis AD; Kelekis NL
    J Magn Reson Imaging; 2006 Feb; 23(2):163-70. PubMed ID: 16374880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging.
    Bomatí-Miguel O; Morales MP; Tartaj P; Ruiz-Cabello J; Bonville P; Santos M; Zhao X; Veintemillas-Verdaguer S
    Biomaterials; 2005 Oct; 26(28):5695-703. PubMed ID: 15878375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.
    Tønning E; Polders D; Callaghan PT; Engelsen SB
    J Magn Reson; 2007 Sep; 188(1):10-23. PubMed ID: 17596979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single spin-echo proton transverse relaxometry of iron-loaded liver.
    St Pierre TG; Clark PR; Chua-Anusorn W
    NMR Biomed; 2004 Nov; 17(7):446-58. PubMed ID: 15523601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents.
    Tóth E; Bolskar RD; Borel A; González G; Helm L; Merbach AE; Sitharaman B; Wilson LJ
    J Am Chem Soc; 2005 Jan; 127(2):799-805. PubMed ID: 15643906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the strong field dependence and nonlinear response to gadolinium contrast agent of proton transverse relaxation rates in dairy cream.
    Mulkern RV; Hung YP; Ababneh Z; Maier SE; Packard AB; Uluer MC; Kacher DF; Gambarota G; Voss S
    Magn Reson Imaging; 2005 Jul; 23(6):757-64. PubMed ID: 16198831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A glycosylated complex of gadolinium, a new potential contrast agent for magnetic resonance angiography?
    Yu G; Yamashita M; Aoshima K; Takahashi M; Oshikawa T; Takayanagi H; Laurent S; Burtea C; Vander Elst L; Muller RN
    Bioorg Med Chem Lett; 2007 Apr; 17(8):2246-9. PubMed ID: 17303417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transverse relaxation rate enhancement caused by magnetic particulates.
    Hardy PA; Henkelman RM
    Magn Reson Imaging; 1989; 7(3):265-75. PubMed ID: 2548049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers.
    Ma HL; Xu YF; Qi XR; Maitani Y; Nagai T
    Int J Pharm; 2008 Apr; 354(1-2):217-26. PubMed ID: 18191350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic starch microspheres, biodistribution and biotransformation. A new organ-specific contrast agent for magnetic resonance imaging.
    Fahlvik AK; Holtz E; Schrøder U; Klaveness J
    Invest Radiol; 1990 Jul; 25(7):793-7. PubMed ID: 2248677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gadocoletic acid trisodium salt (b22956/1): a new blood pool magnetic resonance contrast agent with application in coronary angiography.
    de Haën C; Anelli PL; Lorusso V; Morisetti A; Maggioni F; Zheng J; Uggeri F; Cavagna FM
    Invest Radiol; 2006 Mar; 41(3):279-91. PubMed ID: 16481911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.