BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9762359)

  • 1. Vasculature and microenvironmental gradients: the missing links in novel approaches to cancer therapy?
    Denekamp J; Daşu A; Waites A
    Adv Enzyme Regul; 1998; 38():281-99. PubMed ID: 9762359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy.
    Denekamp J
    Br J Radiol; 1993 Mar; 66(783):181-96. PubMed ID: 7682469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia.
    Franco M; Man S; Chen L; Emmenegger U; Shaked Y; Cheung AM; Brown AS; Hicklin DJ; Foster FS; Kerbel RS
    Cancer Res; 2006 Apr; 66(7):3639-48. PubMed ID: 16585189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the tumor blood vessel network to enhance the efficacy of radiation therapy.
    Siemann DW; Shi W
    Semin Radiat Oncol; 2003 Jan; 13(1):53-61. PubMed ID: 12520464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the regulation of tumor dormancy by angiogenesis in experimental tumors.
    Indraccolo S
    Adv Exp Med Biol; 2013; 734():37-52. PubMed ID: 23143974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors.
    Petit AM; Rak J; Hung MC; Rockwell P; Goldstein N; Fendly B; Kerbel RS
    Am J Pathol; 1997 Dec; 151(6):1523-30. PubMed ID: 9403702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cell death in the tumor microenvironment.
    Wouters BG; Koritzinsky M; Chiu RK; Theys J; Buijsen J; Lambin P
    Semin Radiat Oncol; 2003 Jan; 13(1):31-41. PubMed ID: 12520462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers.
    Bussink J; Kaanders JH; van der Kogel AJ
    Radiother Oncol; 2003 Apr; 67(1):3-15. PubMed ID: 12758235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer.
    Yasuda H
    Nitric Oxide; 2008 Sep; 19(2):205-16. PubMed ID: 18503779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies.
    Martinive P; Defresne F; Bouzin C; Saliez J; Lair F; Grégoire V; Michiels C; Dessy C; Feron O
    Cancer Res; 2006 Dec; 66(24):11736-44. PubMed ID: 17178869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor.
    Jain RK
    Semin Oncol; 2002 Dec; 29(6 Suppl 16):3-9. PubMed ID: 12516032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin.
    Seon BK; Matsuno F; Haruta Y; Kondo M; Barcos M
    Clin Cancer Res; 1997 Jul; 3(7):1031-44. PubMed ID: 9815781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature.
    Davis PD; Dougherty GJ; Blakey DC; Galbraith SM; Tozer GM; Holder AL; Naylor MA; Nolan J; Stratford MR; Chaplin DJ; Hill SA
    Cancer Res; 2002 Dec; 62(24):7247-53. PubMed ID: 12499266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo.
    Li JL; Sainson RC; Shi W; Leek R; Harrington LS; Preusser M; Biswas S; Turley H; Heikamp E; Hainfellner JA; Harris AL
    Cancer Res; 2007 Dec; 67(23):11244-53. PubMed ID: 18056450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growing tumor vessels: more than one way to skin a cat - implications for angiogenesis targeted cancer therapies.
    Leite de Oliveira R; Hamm A; Mazzone M
    Mol Aspects Med; 2011 Apr; 32(2):71-87. PubMed ID: 21540050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AECHL-1, a novel triterpenoid, targets tumor neo-vasculature and impairs the endothelial cell cytoskeleton.
    Dasgupta A; Sawant MA; Lavhale MS; Krishnapati LS; Ghaskadbi S; Sitasawad SL
    Angiogenesis; 2015 Jul; 18(3):283-99. PubMed ID: 25952529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia as a target for combined modality treatments.
    Wouters BG; Weppler SA; Koritzinsky M; Landuyt W; Nuyts S; Theys J; Chiu RK; Lambin P
    Eur J Cancer; 2002 Jan; 38(2):240-57. PubMed ID: 11803141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the tumor vasculature: a strategy to improve radiation therapy.
    Siemann DW; Horsman MR
    Expert Rev Anticancer Ther; 2004 Apr; 4(2):321-7. PubMed ID: 15056061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo and ex vivo gene therapy strategies to treat tumors using adenovirus gene transfer vectors.
    Crystal RG
    Cancer Chemother Pharmacol; 1999; 43 Suppl():S90-9. PubMed ID: 10357566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating tumor hypoxia by nanomedicine for effective cancer therapy.
    Jahanban-Esfahlan R; de la Guardia M; Ahmadi D; Yousefi B
    J Cell Physiol; 2018 Mar; 233(3):2019-2031. PubMed ID: 28198007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.