BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 9762911)

  • 1. The effects of SNAP/SNARE complexes on the ATPase of NSF.
    Matveeva E; Whiteheart SW
    FEBS Lett; 1998 Sep; 435(2-3):211-4. PubMed ID: 9762911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ionic layer is required for efficient dissociation of the SNARE complex by alpha-SNAP and NSF.
    Scales SJ; Yoo BY; Scheller RH
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14262-7. PubMed ID: 11762430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.
    Söllner T; Bennett MK; Whiteheart SW; Scheller RH; Rothman JE
    Cell; 1993 Nov; 75(3):409-18. PubMed ID: 8221884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of NSF ATPase activity during t-SNARE priming.
    Haynes LP; Barnard RJ; Morgan A; Burgoyne RD
    FEBS Lett; 1998 Sep; 436(1):1-5. PubMed ID: 9771883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms.
    Risinger C; Bennett MK
    J Neurochem; 1999 Feb; 72(2):614-24. PubMed ID: 9930733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein.
    Timmers KI; Clark AE; Omatsu-Kanbe M; Whiteheart SW; Bennett MK; Holman GD; Cushman SW
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):429-36. PubMed ID: 8973549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin.
    Hanson PI; Otto H; Barton N; Jahn R
    J Biol Chem; 1995 Jul; 270(28):16955-61. PubMed ID: 7622514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro.
    Hayashi T; Yamasaki S; Nauenburg S; Binz T; Niemann H
    EMBO J; 1995 May; 14(10):2317-25. PubMed ID: 7774590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion.
    Pellegrini LL; O'Connor V; Lottspeich F; Betz H
    EMBO J; 1995 Oct; 14(19):4705-13. PubMed ID: 7588600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking.
    Tolar LA; Pallanck L
    J Neurosci; 1998 Dec; 18(24):10250-6. PubMed ID: 9852562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstituted syntaxin1a/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers.
    Wagner ML; Tamm LK
    Biophys J; 2001 Jul; 81(1):266-75. PubMed ID: 11423412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity alpha-SNAP binding site.
    McMahon HT; Südhof TC
    J Biol Chem; 1995 Feb; 270(5):2213-7. PubMed ID: 7836452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and turnover of NSF- and SNAP-containing "fusion" complexes occur on undocked, clathrin-coated vesicle-derived membranes.
    Swanton E; Sheehan J; Bishop N; High S; Woodman P
    Mol Biol Cell; 1998 Jul; 9(7):1633-47. PubMed ID: 9658160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion complex formation protects synaptobrevin against proteolysis by tetanus toxin light chain.
    Pellegrini LL; O'Connor V; Betz H
    FEBS Lett; 1994 Oct; 353(3):319-23. PubMed ID: 7957884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells.
    Galli T; Zahraoui A; Vaidyanathan VV; Raposo G; Tian JM; Karin M; Niemann H; Louvard D
    Mol Biol Cell; 1998 Jun; 9(6):1437-48. PubMed ID: 9614185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion.
    Steel GJ; Laude AJ; Boojawan A; Harvey DJ; Morgan A
    Biochemistry; 1999 Jun; 38(24):7764-72. PubMed ID: 10387016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of SNARE proteins in rat parotid acinar cells.
    Takuma T; Arakawa T; Tajima Y
    Arch Oral Biol; 2000 May; 45(5):369-75. PubMed ID: 10739858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment proteins (SNAP) mediate dissociation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE) complex.
    Subramaniam VN; Loh E; Hong W
    J Biol Chem; 1997 Oct; 272(41):25441-4. PubMed ID: 9325254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles.
    Otto H; Hanson PI; Jahn R
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6197-201. PubMed ID: 9177194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation.
    Horsnell WG; Steel GJ; Morgan A
    Biochemistry; 2002 Apr; 41(16):5230-5. PubMed ID: 11955072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.