BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9763426)

  • 1. Clb5-associated kinase activity is required early in the spindle pathway for correct preanaphase nuclear positioning in Saccharomyces cerevisiae.
    Segal M; Clarke DJ; Reed SI
    J Cell Biol; 1998 Oct; 143(1):135-45. PubMed ID: 9763426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative regulation of G1 and G2 by S-phase cyclins of Saccharomyces cerevisiae.
    Basco RD; Segal MD; Reed SI
    Mol Cell Biol; 1995 Sep; 15(9):5030-42. PubMed ID: 7651421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of S-phase-promoting CDKs in late G1 defines a "point of no return" after which Cdc6 synthesis cannot promote DNA replication in yeast.
    Piatti S; Böhm T; Cocker JH; Diffley JF; Nasmyth K
    Genes Dev; 1996 Jun; 10(12):1516-31. PubMed ID: 8666235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae.
    Schwob E; Nasmyth K
    Genes Dev; 1993 Jul; 7(7A):1160-75. PubMed ID: 8319908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae.
    Dirick L; Goetsch L; Ammerer G; Byers B
    Science; 1998 Sep; 281(5384):1854-7. PubMed ID: 9743499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific genetic interactions between spindle assembly checkpoint proteins and B-Type cyclins in Saccharomyces cerevisiae.
    Ikui AE; Cross FR
    Genetics; 2009 Sep; 183(1):51-61. PubMed ID: 19581447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint.
    Stuart D; Wittenberg C
    Genes Dev; 1998 Sep; 12(17):2698-710. PubMed ID: 9732268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state.
    Dahmann C; Diffley JF; Nasmyth KA
    Curr Biol; 1995 Nov; 5(11):1257-69. PubMed ID: 8574583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-phase cyclin-dependent kinases promote sister chromatid cohesion in budding yeast.
    Hsu WS; Erickson SL; Tsai HJ; Andrews CA; Vas AC; Clarke DJ
    Mol Cell Biol; 2011 Jun; 31(12):2470-83. PubMed ID: 21518961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family.
    Tjandra H; Compton J; Kellogg D
    Curr Biol; 1998 Sep; 8(18):991-1000. PubMed ID: 9740799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae.
    Hu F; Aparicio OM
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8910-5. PubMed ID: 15956196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6.
    Jackson LP; Reed SI; Haase SB
    Mol Cell Biol; 2006 Mar; 26(6):2456-66. PubMed ID: 16508019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6.
    Siegmund RF; Nasmyth KA
    Mol Cell Biol; 1996 Jun; 16(6):2647-55. PubMed ID: 8649372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spindle pole body separation in Saccharomyces cerevisiae requires dephosphorylation of the tyrosine 19 residue of Cdc28.
    Lim HH; Goh PY; Surana U
    Mol Cell Biol; 1996 Nov; 16(11):6385-97. PubMed ID: 8887667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast.
    Amon A
    EMBO J; 1997 May; 16(10):2693-702. PubMed ID: 9184216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates.
    Loog M; Morgan DO
    Nature; 2005 Mar; 434(7029):104-8. PubMed ID: 15744308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclin-specific START events and the G1-phase specificity of arrest by mating factor in budding yeast.
    Oehlen LJ; Jeoung DI; Cross FR
    Mol Gen Genet; 1998 May; 258(3):183-98. PubMed ID: 9645424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage inhibits proteolysis of the B-type cyclin Clb5 in S. cerevisiae.
    Germain D; Hendley J; Futcher B
    J Cell Sci; 1997 Aug; 110 ( Pt 15)():1813-20. PubMed ID: 9264468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of Clb5 kinase activity by mating factor.
    Jeoung DI; Cross F
    Mol Cells; 2000 Aug; 10(4):460-4. PubMed ID: 10987145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae.
    Jaspersen SL; Charles JF; Tinker-Kulberg RL; Morgan DO
    Mol Biol Cell; 1998 Oct; 9(10):2803-17. PubMed ID: 9763445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.