These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9763525)

  • 1. Impaired insulin-stimulated glucose oxidation and free fatty acid suppression in patients with familial combined hyperlipidemia: a precursor defect for dyslipidemia?
    Karjalainen L; Pihlajamäki J; Karhapää P; Laakso M
    Arterioscler Thromb Vasc Biol; 1998 Oct; 18(10):1548-53. PubMed ID: 9763525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired free fatty acid suppression during hyperinsulinemia is a characteristic finding in familial combined hyperlipidemia, but insulin resistance is observed only in hypertriglyceridemic patients.
    Pihlajamäki J; Karjalainen L; Karhapää P; Vauhkonen I; Laakso M
    Arterioscler Thromb Vasc Biol; 2000 Jan; 20(1):164-70. PubMed ID: 10634813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different regulation of free fatty acid levels and glucose oxidation by the Trp64Arg polymorphism of the beta3-adrenergic receptor gene and the promoter variant (A-3826G) of the uncoupling protein 1 gene in familial combined hyperlipidemia.
    Pihlajamäki J; Rissanen J; Valve R; Heikkinen S; Karjalainen L; Laakso M
    Metabolism; 1998 Nov; 47(11):1397-402. PubMed ID: 9826220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of insulin resistant lipid metabolism in adipose tissue in familial combined hyperlipidemia, but not type 2 diabetes mellitus.
    van der Kallen CJ; Voors-Pette C; Bouwman FG; Keizer HA; Lu JY; van de Hulst RR; Bianchi R; Janssen MJ; Keulen ET; Boeckx WD; Rotter JI; de Bruin TW
    Atherosclerosis; 2002 Oct; 164(2):337-46. PubMed ID: 12204806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-250A substitution in promoter of hepatic lipase gene is associated with dyslipidemia and insulin resistance in healthy control subjects and in members of families with familial combined hyperlipidemia.
    Pihlajamäki J; Karjalainen L; Karhapää P; Vauhkonen I; Taskinen MR; Deeb SS; Laakso M
    Arterioscler Thromb Vasc Biol; 2000 Jul; 20(7):1789-95. PubMed ID: 10894818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defects of insulin action on fatty acid and carbohydrate metabolism in familial combined hyperlipidemia.
    Aitman TJ; Godsland IF; Farren B; Crook D; Wong HJ; Scott J
    Arterioscler Thromb Vasc Biol; 1997 Apr; 17(4):748-54. PubMed ID: 9108790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed and exaggerated postprandial complement component 3 response in familial combined hyperlipidemia.
    Meijssen S; van Dijk H; Verseyden C; Erkelens DW; Cabezas MC
    Arterioscler Thromb Vasc Biol; 2002 May; 22(5):811-6. PubMed ID: 12006395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic physiologic hyperinsulinemia impairs suppression of plasma free fatty acids and increases de novo lipogenesis but does not cause dyslipidemia in conscious normal rats.
    Koopmans SJ; Kushwaha RS; DeFronzo RA
    Metabolism; 1999 Mar; 48(3):330-7. PubMed ID: 10094109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo evidence of defective postprandial and postabsorptive free fatty acid metabolism in familial combined hyperlipidemia.
    Meijssen S; Cabezas MC; Twickler TB; Jansen H; Erkelens DW
    J Lipid Res; 2000 Jul; 41(7):1096-102. PubMed ID: 10884291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Codon 54 polymorphism of the human intestinal fatty acid binding protein 2 gene is associated with dyslipidemias but not with insulin resistance in patients with familial combined hyperlipidemia.
    Pihlajamäki J; Rissanen J; Heikkinen S; Karjalainen L; Laakso M
    Arterioscler Thromb Vasc Biol; 1997 Jun; 17(6):1039-44. PubMed ID: 9194752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gender differences in postprandial ketone bodies in normolipidemic subjects and in untreated patients with familial combined hyperlipidemia.
    Halkes CJ; van Dijk H; Verseyden C; de Jaegere PP; Plokker HW; Meijssen S; Erkelens DW; Cabezas MC
    Arterioscler Thromb Vasc Biol; 2003 Oct; 23(10):1875-80. PubMed ID: 12933534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo modulation of plasma free fatty acids in patients with familial combined hyperlipidemia using lipid-lowering medication.
    Meijssen S; Derksen RJ; Bilecen S; Erkelens DW; Cabezas MC
    J Clin Endocrinol Metab; 2002 Apr; 87(4):1576-80. PubMed ID: 11932285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C3, hormone-sensitive lipase, and peroxisome proliferator-activated receptor gamma expression in adipose tissue of familial combined hyperlipidemia patients.
    Ylitalo K; Nuotio I; Viikari J; Auwerx J; Vidal H; Taskinen MR
    Metabolism; 2002 May; 51(5):664-70. PubMed ID: 11979403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the -308A allele of the TNF-alpha gene on insulin action is dependent on obesity.
    Pihlajamäki J; Ylinen M; Karhapää P; Vauhkonen I; Laakso M
    Obes Res; 2003 Jul; 11(7):912-7. PubMed ID: 12855762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Pro12A1a substitution in the peroxisome proliferator activated receptor gamma 2 is associated with an insulin-sensitive phenotype in families with familial combined hyperlipidemia and in nondiabetic elderly subjects with dyslipidemia.
    Pihlajamäki J; Miettinen R; Valve R; Karjalainen L; Mykkänen L; Kuusisto J; Deeb S; Auwerx J; Laakso M
    Atherosclerosis; 2000 Aug; 151(2):567-74. PubMed ID: 10924736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired insulin-stimulated nonoxidative glucose metabolism in pancreas-kidney transplant recipients. Dose-response effects of insulin on glucose turnover.
    Christiansen E; Vestergaard H; Tibell A; Hother-Nielsen O; Holst JJ; Pedersen O; Madsbad S
    Diabetes; 1996 Sep; 45(9):1267-75. PubMed ID: 8772733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hormone sensitive lipase gene in familial combined hyperlipidemia and insulin resistance.
    Pihlajamäki J; Valve R; Karjalainen L; Karhapää P; Vauhkonen I; Laakso M
    Eur J Clin Invest; 2001 Apr; 31(4):302-8. PubMed ID: 11298776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of IGF-I on FFA and glucose metabolism in control and type 2 diabetic subjects.
    Pratipanawatr T; Pratipanawatr W; Rosen C; Berria R; Bajaj M; Cusi K; Mandarino L; Kashyap S; Belfort R; DeFronzo RA
    Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1360-8. PubMed ID: 12006367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variants in the PPARgamma gene affect fatty acid and glycerol metabolism in familial combined hyperlipidemia.
    Eurlings PM; van der Kallen CJ; Vermeulen VM; de Bruin TW
    Mol Genet Metab; 2003 Nov; 80(3):296-301. PubMed ID: 14680975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility of LDL to oxidation in vitro and antioxidant capacity in familial combined hyperlipidemia: comparison of patients with different lipid phenotypes.
    Liu ML; Ylitalo K; Vakkilainen J; Nuotio I; Valkonen M; Lahdenperä S; Viikari J; Taskinen MR
    Ann Med; 2002; 34(1):48-54. PubMed ID: 12014434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.