BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 9763577)

  • 1. Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations.
    Yaccoby S; Barlogie B; Epstein J
    Blood; 1998 Oct; 92(8):2908-13. PubMed ID: 9763577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proliferative potential of myeloma plasma cells manifest in the SCID-hu host.
    Yaccoby S; Epstein J
    Blood; 1999 Nov; 94(10):3576-82. PubMed ID: 10552969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of a model for the homing of multiple myeloma cells to human bone marrow.
    Urashima M; Chen BP; Chen S; Pinkus GS; Bronson RT; Dedera DA; Hoshi Y; Teoh G; Ogata A; Treon SP; Chauhan D; Anderson KC
    Blood; 1997 Jul; 90(2):754-65. PubMed ID: 9226176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SCID-rab model: a novel in vivo system for primary human myeloma demonstrating growth of CD138-expressing malignant cells.
    Yata K; Yaccoby S
    Leukemia; 2004 Nov; 18(11):1891-7. PubMed ID: 15385929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SCID-hu myeloma model.
    Epstein J; Yaccoby S
    Methods Mol Med; 2005; 113():183-90. PubMed ID: 15968103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity.
    Yaccoby S; Pearse RN; Johnson CL; Barlogie B; Choi Y; Epstein J
    Br J Haematol; 2002 Feb; 116(2):278-90. PubMed ID: 11841428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in vivo model of human multiple myeloma bone disease.
    Alsina M; Boyce B; Devlin RD; Anderson JL; Craig F; Mundy GR; Roodman GD
    Blood; 1996 Feb; 87(4):1495-501. PubMed ID: 8608240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotransplantation of human multiple myeloma cell lines in severe combined immunodeficiency (SCID) mice.
    Tong AW; Huang YW; Zhang BQ; Netto G; Vitetta ES; Stone MJ
    Anticancer Res; 1993; 13(3):593-7. PubMed ID: 8391243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonirradiated NOD/SCID-human chimeric animal model for primary human multiple myeloma: a potential in vivo culture system.
    Huang SY; Tien HF; Su FH; Hsu SM
    Am J Pathol; 2004 Feb; 164(2):747-56. PubMed ID: 14742278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of animal models in multiple myeloma.
    Libouban H
    Morphologie; 2015 Jun; 99(325):63-72. PubMed ID: 25898798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinically relevant SCID-hu in vivo model of human multiple myeloma.
    Tassone P; Neri P; Carrasco DR; Burger R; Goldmacher VS; Fram R; Munshi V; Shammas MA; Catley L; Jacob GS; Venuta S; Anderson KC; Munshi NC
    Blood; 2005 Jul; 106(2):713-6. PubMed ID: 15817674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimyeloma efficacy of thalidomide in the SCID-hu model.
    Yaccoby S; Johnson CL; Mahaffey SC; Wezeman MJ; Barlogie B; Epstein J
    Blood; 2002 Dec; 100(12):4162-8. PubMed ID: 12393672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice.
    Pilarski LM; Hipperson G; Seeberger K; Pruski E; Coupland RW; Belch AR
    Blood; 2000 Feb; 95(3):1056-65. PubMed ID: 10648422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice.
    Namikawa R; Ueda R; Kyoizumi S
    Blood; 1993 Oct; 82(8):2526-36. PubMed ID: 8104540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a new model of human multiple myeloma using NOD/SCID/gammac(null) (NOG) mice.
    Miyakawa Y; Ohnishi Y; Tomisawa M; Monnai M; Kohmura K; Ueyama Y; Ito M; Ikeda Y; Kizaki M; Nakamura M
    Biochem Biophys Res Commun; 2004 Jan; 313(2):258-62. PubMed ID: 14684154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells.
    Tassone P; Goldmacher VS; Neri P; Gozzini A; Shammas MA; Whiteman KR; Hylander-Gans LL; Carrasco DR; Hideshima T; Shringarpure R; Shi J; Allam CK; Wijdenes J; Venuta S; Munshi NC; Anderson KC
    Blood; 2004 Dec; 104(12):3688-96. PubMed ID: 15292058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.
    Lawson MA; Paton-Hough JM; Evans HR; Walker RE; Harris W; Ratnabalan D; Snowden JA; Chantry AD
    PLoS One; 2015; 10(3):e0119546. PubMed ID: 25768011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice.
    Pilarski LM; Seeberger K; Coupland RW; Eshpeter A; Keats JJ; Taylor BJ; Belch AR
    Exp Hematol; 2002 Mar; 30(3):221-8. PubMed ID: 11882359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term engraftment of fresh human myeloma cells in SCID mice.
    Feo-Zuppardi FJ; Taylor CW; Iwato K; Lopez MH; Grogan TM; Odeleye A; Hersh EM; Salmon SE
    Blood; 1992 Dec; 80(11):2843-50. PubMed ID: 1450409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin-18 inhibits lodging and subsequent growth of human multiple myeloma cells in the bone marrow.
    Yamashita K; Iwasaki T; Tsujimura T; Sugihara A; Yamada N; Ueda H; Okamura H; Futani H; Maruo S; Terada N
    Oncol Rep; 2002; 9(6):1237-44. PubMed ID: 12375027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.