These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 9763695)
1. The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Basnakova G; Stephens ER; Thaller MC; Rossolini GM; Macaskie LE Appl Microbiol Biotechnol; 1998 Aug; 50(2):266-72. PubMed ID: 9763695 [TBL] [Abstract][Full Text] [Related]
2. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp. : a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Macaskie LE; Bonthrone KM; Yong P; Goddard DT Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():1855-1867. PubMed ID: 10931890 [TBL] [Abstract][Full Text] [Related]
3. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Bonthrone KM; Basnakova G; Lin F; Macaskie LE Nat Biotechnol; 1996 May; 14(5):635-8. PubMed ID: 9630957 [TBL] [Abstract][Full Text] [Related]
4. Phosphatase production and activity in Citrobacter freundii and a naturally occurring, heavy-metal-accumulating Citrobacter sp. Montgomery DM; Dean AC; Wiffen P; Macaskie LE Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2433-41. PubMed ID: 7582003 [TBL] [Abstract][Full Text] [Related]
5. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4. Macaskie LE; Empson RM; Cheetham AK; Grey CP; Skarnulis AJ Science; 1992 Aug; 257(5071):782-4. PubMed ID: 1496397 [TBL] [Abstract][Full Text] [Related]
6. Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. Macaskie LE; Jeong BC; Tolley MR FEMS Microbiol Rev; 1994 Aug; 14(4):351-67. PubMed ID: 7917422 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of phoN-Sf, a gene on the large plasmid of Shigella flexneri 2a encoding a nonspecific phosphatase. Uchiya KI; Tohsuji M; Nikai T; Sugihara H; Sasakawa C J Bacteriol; 1996 Aug; 178(15):4548-54. PubMed ID: 8755883 [TBL] [Abstract][Full Text] [Related]
8. [Uptake of nickel from industrial wastewater by genetically engineered Escherichia coli JM109]. Deng X; Li QB; Lu YH; Sun DH; Huang YL Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):343-8. PubMed ID: 15969019 [TBL] [Abstract][Full Text] [Related]
9. Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Jeong BC; Hawes C; Bonthrone KM; Macaskie LE Microbiology (Reading); 1997 Jul; 143 ( Pt 7)():2497-2507. PubMed ID: 9245830 [TBL] [Abstract][Full Text] [Related]
10. Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. Xu R; Wu K; Han H; Ling Z; Chen Z; Liu P; Xiong J; Tian F; Zafar Y; Malik K; Li X Chemosphere; 2018 Nov; 211():1156-1165. PubMed ID: 30223331 [TBL] [Abstract][Full Text] [Related]
12. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation. Kulkarni S; Misra CS; Gupta A; Ballal A; Apte SK Appl Environ Microbiol; 2016 Aug; 82(16):4965-74. PubMed ID: 27287317 [TBL] [Abstract][Full Text] [Related]
13. Protein engineering of class-A non-specific acid phosphatase (PhoN) of Salmonella typhimurium: modulation of the pH-activity profile. Makde RD; Dikshit K; Kumar V Biomol Eng; 2006 Oct; 23(5):247-51. PubMed ID: 16901752 [TBL] [Abstract][Full Text] [Related]
14. Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Martinez RJ; Beazley MJ; Taillefert M; Arakaki AK; Skolnick J; Sobecky PA Environ Microbiol; 2007 Dec; 9(12):3122-33. PubMed ID: 17991039 [TBL] [Abstract][Full Text] [Related]
15. Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. Finlay JA; Allan VJ; Conner A; Callow ME; Basnakova G; Macaskie LE Biotechnol Bioeng; 1999 Apr; 63(1):87-97. PubMed ID: 10099584 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation of heavy metals, and application to the remediation of acid mine drainage water containing uranium. Macaskie LE Res Microbiol; 1997; 148(6):528-30. PubMed ID: 9765836 [No Abstract] [Full Text] [Related]
17. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria. Macaskie LE; Bonthrone KM; Rouch DA FEMS Microbiol Lett; 1994 Aug; 121(2):141-6. PubMed ID: 7926662 [TBL] [Abstract][Full Text] [Related]
18. Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appukuttan D; Rao AS; Apte SK Appl Environ Microbiol; 2006 Dec; 72(12):7873-8. PubMed ID: 17056698 [TBL] [Abstract][Full Text] [Related]
19. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Misra CS; Appukuttan D; Kantamreddi VS; Rao AS; Apte SK Bioeng Bugs; 2012 Jan; 3(1):44-8. PubMed ID: 22179144 [TBL] [Abstract][Full Text] [Related]
20. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Naz T; Khan MD; Ahmed I; Rehman SU; Rha ES; Malook I; Jamil M Toxicol Ind Health; 2016 Sep; 32(9):1619-27. PubMed ID: 25739395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]