These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9763703)

  • 1. Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral denervation of the lateral line system.
    Conley RA; Coombs S
    J Comp Physiol A; 1998 Sep; 183(3):335-44. PubMed ID: 9763703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dipole source localization by mottled sculpin. I. Approach strategies.
    Coombs S; Conley RA
    J Comp Physiol A; 1997 Apr; 180(4):387-99. PubMed ID: 9106998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi).
    Coombs S; Patton P
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):279-97. PubMed ID: 19137317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic image formation by the peripheral lateral line system of the Lake Michigan mottled sculpin, Cottus bairdi.
    Coombs S; Finneran JJ; Conley RA
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1111-4. PubMed ID: 11079380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts.
    Coombs S; Braun CB; Donovan B
    J Exp Biol; 2001 Jan; 204(Pt 2):337-48. PubMed ID: 11136619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dipole source localization by the mottled sculpin. II. The role of lateral line excitation patterns.
    Coombs S; Conley RA
    J Comp Physiol A; 1997 Apr; 180(4):401-15. PubMed ID: 9106999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi).
    Coombs S
    J Exp Biol; 1994 May; 190():109-29. PubMed ID: 7964388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems.
    New JG; Alborg Fewkes L; Khan AN
    J Exp Biol; 2001 Mar; 204(Pt 6):1207-21. PubMed ID: 11222136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of surface wave direction by the lateral line system of Xenopus: source localization before and after inactivation of different parts of the lateral line.
    Claas B; Münz H
    J Comp Physiol A; 1996 Feb; 178(2):253-68. PubMed ID: 8592306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The overlapping roles of the inner ear and lateral line: the active space of dipole source detection.
    Braun CB; Coombs S
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1115-9. PubMed ID: 11079381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source level discrimination by the lateral line system of the mottled sculpin, Cottus bairdi.
    Coombs S; Fay RR
    J Acoust Soc Am; 1993 Apr; 93(4 Pt 1):2116-23. PubMed ID: 8473624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal detection theory, lateral-line excitation patterns and prey capture behaviour of mottled sculpin.
    Coombs S
    Anim Behav; 1999 Aug; 58(2):421-430. PubMed ID: 10458893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibratory sources as compound stimuli for the octavolateralis systems: dissection of specific stimulation channels using multiple behavioral approaches.
    Braun CB; Coombs S
    J Exp Psychol Anim Behav Process; 2010 Apr; 36(2):243-57. PubMed ID: 20384404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi.
    Coombs S; Janssen J
    J Comp Physiol A; 1990 Sep; 167(4):557-67. PubMed ID: 2277359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain.
    Wang S; Redgrave P
    Neuroscience; 1997 Dec; 81(4):967-88. PubMed ID: 9330360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S; Lomber SG
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi).
    Kanter MJ; Coombs S
    J Exp Biol; 2003 Jan; 206(Pt 1):59-70. PubMed ID: 12456697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water.
    Rapo MA; Jiang H; Grosenbaugh MA; Coombs S
    J Exp Biol; 2009 May; 212(Pt 10):1494-505. PubMed ID: 19411543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the lateral line in active drag reduction by clupeoid fishes.
    Lighthill J
    Symp Soc Exp Biol; 1995; 49():35-48. PubMed ID: 8571234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear estimation-based dipole source localization for artificial lateral line systems.
    Abdulsadda AT; Tan X
    Bioinspir Biomim; 2013 Jun; 8(2):026005. PubMed ID: 23538856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.