These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 976373)

  • 1. On the calcium concentration of cataractous and normal human lenses and protein fractions of cataractous lenses.
    Jedziniak JA; Nicoli DF; Yates EM; Benedek GB
    Exp Eye Res; 1976 Sep; 23(3):325-32. PubMed ID: 976373
    [No Abstract]   [Full Text] [Related]  

  • 2. The distribution of soluble, insoluble and high molecular weight fractions of senile normal and cataractous human lenses as a function of internal calcium.
    Bushell AR; Duncan G
    Exp Eye Res; 1978 Feb; 26(2):223-6. PubMed ID: 631235
    [No Abstract]   [Full Text] [Related]  

  • 3. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins.
    Kodama T; Wong R; Takemoto L
    Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Proteome of Cataract Markers: Focus on Crystallins.
    Zhang K; Zhu X; Lu Y
    Adv Clin Chem; 2018; 86():179-210. PubMed ID: 30144840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients.
    Bours J; el-Layeh AA; Emarah MH; Rink H
    Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Differences in the four low molecular weight proteins and in the water content from the various types of human cataractous lenses (author's transl)].
    Kodama T; Kabasawa I; Sakaue E
    Nippon Ganka Gakkai Zasshi; 1982; 86(5):531-4. PubMed ID: 7113841
    [No Abstract]   [Full Text] [Related]  

  • 13. Analysis of low molecular weight fractions in human senile cataractous lens.
    Takehana M; Takemoto LJ; Iwata S
    Jpn J Ophthalmol; 1983; 27(4):585-91. PubMed ID: 6668751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EM immunolocalization of alpha-crystallins: association with the plasma membrane from normal and cataractous human lenses.
    Boyle DL; Takemoto L
    Curr Eye Res; 1996 May; 15(5):577-82. PubMed ID: 8670759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of non-diffusible calcium and sodium in normal and cataractous human lenses.
    Duncan G; van Heyningen R
    Exp Eye Res; 1977 Aug; 25(2):183-93. PubMed ID: 913509
    [No Abstract]   [Full Text] [Related]  

  • 16. [The molecular state of human cataractous lens betas and gamma H crystallins].
    Matsuda K; Kabasawa I; Takagi M; Kanehisa T
    Nippon Ganka Gakkai Zasshi; 1985 Feb; 89(2):375-8. PubMed ID: 4003218
    [No Abstract]   [Full Text] [Related]  

  • 17. Crystallin proteins in lenses of hereditary cataractous rat, ICR/f.
    Takeuchi N; Kamei A
    Biol Pharm Bull; 2000 Mar; 23(3):283-90. PubMed ID: 10726880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses.
    Tang D; Borchman D; Yappert MC; Vrensen GF; Rasi V
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2059-66. PubMed ID: 12714644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.